• Title/Summary/Keyword: force transmission ratio

Search Result 80, Processing Time 0.03 seconds

Kinematic Optimal Design of Excavator with Performance Analysis (굴삭기의 기구학적 최적설계와 성능해석)

  • 한동영;김희국;이병주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.617-622
    • /
    • 1994
  • In this paper, we perform a two-stage, kinematic optimal design for 3 degree-of-freedom excavator system which consists of boom, arm, and bucket. The objective of the first stage is to find the optimal joint parameters which maximize the force-torque transmission ratio between the hydraulic actuator and the rotating joint. The objective of the first stage is to find the optimal link parameters which maximize the isotropic characteristic throughout the workspace. It is illustrated that performances of the optimized excavator are improved compared to those of HE280 excavator, with respect to the described performace index and maximum load handling capacity.

  • PDF

Structure Design Optimization of Small Class Forklift for Idle Vibration Reduction (소형 지게차의 Idle 진동 저감을 위한 차체 구조 최적 설계)

  • Lee, Wontae;Kim, Younghyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.660-664
    • /
    • 2014
  • A diesel forklift truck under 3-ton class has disadvantages in the vibration transmission path. Because the weight ratio of body structure to powertrain which is source of excitation force is lower th an a mid-class forklift. In addition, the torsional and bending vibration mode frequencies of body structure are within the engine excitation frequency range, then high idle vibration generated by resonance. In this paper vehicle body structure design and optimization technique considering idle vibration reduction are presented. Design sensitivity analysis is applied to search the sensitive of design parameters in body structure. The design parameters such as thickness and pillar cross section were optimized to increase the torsional and bending vibration mode frequencies.

  • PDF

The Behaviour of Track/Railway Bridge according to Pad Stiffness of Fastener System on Concrete Slab Track (콘크리트슬래브궤도 체결장치의 패드강성에 따른 궤도/교량의 거동 분석)

  • Lee, Jun-Ho;Sung, Deok-Yong;Park, Yong-Gul;Kim, Sung-Il
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1628-1636
    • /
    • 2008
  • Construction of concrete slab track is trending to increase gradually in national and international for reduction in track maintenance cost and secure of ride comfort. But elastic pad becomes superannuated due to repeated train operation. After all, it brings change of pad stiffness and it could directly act on track and bridge as load transmission and impact force. In this study, we carried out laboratory test changing pad stiffness after making a model of 15m bridge and laying concrete slab track. Also, we carried out static and dynamic behaviors test(stress, natural frequency, damping ratio, vibrational acceleration, deflection) of bridge and track and experimentally analyzed them by change of elastic pad stiffness on rail fastener.

  • PDF

Preparation and Characterization of Spherical Silica-coated Ceria Nanoparticles by Sol-Gel Method

  • Ahn, Yang-Kyu;Jeoung, Hae-Chan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.96-96
    • /
    • 2010
  • Monodispersed spherical silica-coated ceria nanoparticles were prepared through a sol-gel process using tetraethylorthosilicate (TEOS) and ceria fine particles. In this process, ceria fine particles were also prepared from cerium nitrate. The mean size of ceria particles was 300nm. Silica nanoparticles with narrow particle size distribution were prepared by controlled hydrolysis of TEOS solution. The silica sols were obtained by peptization, the process of redispersing a coagulated colloid, and were coated on ceria particles by the control of the weight ratio of silica/ceria and the pH of the mixture in aqueous solution. The morphologies of particles were characterized with scaning electron microscopy(SEM), transmission electron microscopy(TEM) and atomic force microscopy(AFM). The coating thickness of silica particles obtained by using this method was controlled in the range of 30 - 70nm.

  • PDF

Heat Source Identification Technique of Aircraft and Flare using 2-color Detectable Infrared Sensors (복수 대역 감지 적외선 센서를 이용한 항공기와 플레어의 열원 식별 기술)

  • Lee, Dong-Si;Lee, Kee-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1031-1039
    • /
    • 2015
  • Present guided missiles are equipped with infrared seeker to find the infrared sources radiating from target plane and then chase, which results in an improvement of the hitting success rate when in striking target objects. To interrupt the chases from the guided missile, the target plane spreads the flare, avoiding the missile attracts. Our research is to develop a 2-color infrared identification technique to discern the flare and real thermal source from target plane. Considering flare radiation properties and EM atmosphere transmission rates, two channels were selected, in which main channel (MC) was in a range of 3.7 μm∼4.8 μm and auxiliary channel (AC) in 1.7 μm∼2.3 μm. A 2500K heat source was used for an artificial flare source, while a 570K heat source was utilized for airplane infrared source in experimental testing. Two infrared sensors detectable only at each chanel were employed in order to measure the voltage ratio from two channels, identifying the flare and real target plane via comparison the voltage ratio. Several experimental conditions were imported in order to prove that our proposed 2-color infrared identification technique is very efficient way to discern heat sources from aircraft and flare, demonstrating that our proposed technique is very promising means for our force’s InfraRed Counter Counter Measure (IRCCM) in order to countermeasure opposite force’s InfraRed Counter Measures (IRCM).

Elliptical EHL Contacts under Dynamic Loading Conditions in HERB Drive

  • Jang, Si-Youl;Park, Kyoung-Kuhn;Kim, Wan-Doo;Moon, Ho-Jee
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.89-90
    • /
    • 2002
  • Ball reducer (HERB Drive: High Efficient Wave Rolling Ball Drive) with waved grooves has many advantages over other types of reducers for high-reduction ratio, low noise and low energy loss, etc. The mechanism of force transmission is very similar to that of cam and follower in automobile valve train system especially in contact behaviors. In this study, we have investigated the traces of contact between ball and outer ring, and the dynamic contact behaviors of elastohydodynamic lubrication(EHL) with a certain reduction ratio. In order to verify the contact behaviors between ball and outer ring for the critical endurance lift, the contact velocity and load are computed for a cycle. During some intervals of a cycle, the contact velocity reverses its direction very suddenly. It is expected that changing the contact direction causes undesirable endurance performance because EHL film frequently col lapse at the moment of velocity reversal. From the computational investigation in this work, we hope to predict similar contact damages in other machinery due to this kind of contact behaviors, which is very typical in many contact phenomena.

  • PDF

Synthesis of conducting and magnetic nanocomposite of cross-linked aniline sulfide resin

  • Hosseini, Seyed Hossein
    • Advances in materials Research
    • /
    • v.3 no.4
    • /
    • pp.233-242
    • /
    • 2014
  • Magnetic and conducting aniline sulfide resin cross-linked (ASC-Fe3O4) nanocomposite has been prepared in the presence of aniline sulfide resin (ASR), aniline, $Fe_3O_4$ coated by polyethylene glycol (PEG) and initiator. The magnetic properties of the resulting composites showed ferromagnetic behavior, such as high-saturated magnetization (Ms= 41 emu/g), and coercive force (Hc=1.5 Oe). The saturated magnetization was increased by increasing of $Fe_3O_4$ content and decreased by increasing aniline ratio. The transmission electron micrograph (TEM) and X-ray diffraction proved that nanometer-sized about 20-30 nm $Fe_3O_4$ in the composite. The average size of ASC-$Fe_3O_4$ nanocomposite with core-shell structure was about 50-60 nm, and polydisperse. This approach may also be extended to the synthesis and modification of other polymers. Electrical conductivity of aniline sulfide resin cross-linked (ASC) nanocomposite has been studied by four-point probe method and produced $3.3{\times}10^{-4}S/cm$ conductivity for it. The conductivity of the composites at room temperature depended on the $Fe_3O_4$, aniline ratio and doping degree. The thermogravimetry analysis (TGA) results showed that this resin is thermal resistance near of $500^{\circ}C$. So, It can be used for resistance thermal coating for military applications. $Fe_3O_4$-PASC nanocomposite has been flexible structure with electrical and magnetic properties.

운반자 구속 현상이 개선된 InAs/GaAs 양자점 성장 및 특성평가

  • Jo, Byeong-Gu;Lee, Gwang-Jae;Park, Dong-U;Kim, Hyeon-Jun;Hwang, Jeong-U;O, Hye-Min;Lee, Gwan-Jae;Kim, Jin-Su;Kim, Jong-Su;No, Sam-Gyu;Im, Jae-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.154-154
    • /
    • 2011
  • 자발형성법(Self-assembled)을 이용한 InAs 양자점(Quantum dots)은 성장법의 고유한 물리적 한계로 길이방향에 대한 수직방향 비율(Aspect ratio, AR)이 상대적으로 작은 값을 갖는다. 기존에 보고된 바에 따르면 GaAs 기판에 형성한 InAs 양자점은 일반적으로 AR이 0.3 정도를 보인다. 이러한 높이가 상대적으로 낮은 InAs 양자점은 수직방향으로 운반자(Carrier)의 파동함수 (Wave-function) 구속이 작게 되어 나노 양자점 구조의 0차원적 특성이 저하되게 된다. 본 논문에서는 Arsenic 차단법(Interruption technique)을 이용한 수정자발형성법(Modified self-assembled method, MSAM)으로 InAs 양자점(MSAM-InAs 양자점)을 형성하고 성장 변수에 따라 광 및 구조적 특성을 평가하여 0차원 순도를 분석하였다. MSAM InAs 양자점을 성장하고 12 nm 두께의 GaAs spacer 층을 증착한 후 $600^{\circ}C$에서 30초 동안 Arsenic 분위기에서 열처리(Annealing)를 수행 한 후 다시 InAs을 증착 하였다. 이러한 과정을 5번 반복하여 높이 방향으로 형상을 개선시킨 InAs 양자점을(Vetically-controlled MSAM, VCMSAM) 성장하였다. 기존 자발형성법을 이용한 InAs 양자점과 MSAM-InAs 양자점 단일층 구조를 기준시료로 성장하였다. 상온 포토루미네슨스(Photoluminescence, PL) 실험에서 단일 MSAM InAs 양자점 및 VCMSAM 양자점 시료의 발광에너지는 각각 1.10 eV와 1.13 eV를 나타내었다. VCMSAM InAs 양자점 시료의 PL세기는 단일 MSAM 양자점보다 3.4배 증가되어, 확연히 높게 나타나는 결과를 보였다. 이러한 결과는 높이 방향으로 운반자의 파동함수 구속력이 증가하여 구속준위 (Localized states)의 전자-정공의 파동함수중첩(Overlap integral)이 개선된 것으로 설명할 수 있다. 투과전자현미경(Transmission electron microscopy) 및 원자력간 현미경(Atomic force microscopy)을 이용하여 구조적 특성을 평가하고 이를 비교 분석한 결과를 보고한다.

  • PDF

Lubrication of Contact Area in Ball Reducer with Waved Grooves (파형 구름볼 감속기의 접촉점에서의 윤활특성 해석)

  • Jang, Si-Youl;Park, Kyoung-Kuhn;Kim, Wan-Doo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.143-149
    • /
    • 2002
  • Ball reducer with waved grooves has many advantages over other reducers for the high-reduction ratios, low noise and low energy loss, etc. The mechanism of force transmission is very similar to that of cam and follower in automobile valve train system especially in the contact geometry. In this study, we have investigated the traces of contact between ball and outer race and the working behaviors with a certain reduction ratio. In order to verify the contact behaviors between ball and outer race, which determines the critical endurance life the contact velocity and load are computed for a cycle. During some period of a cycle, the contact velocity reverses its direction very suddenly, which causes undesirable endurance performance of this machinery. From the computational investigation in this work, we hope to predict similar contact damages in other machinery due to this kind of contact behaviors, which is very common in many contact phenomena.

  • PDF

Analysis of the Redundant Actuation Characteristics of the Planar 3-DOF Parallel Mechanism (평면형 3자유도 병렬 메커니즘의 여유 구동 특성 분석)

  • Jeon, Jung In;Oh, Hyun Suk;Woo, Sang Hun;Kim, Sung Mok;Kim, Min Gun;Kim, Whee Kuk
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.2
    • /
    • pp.194-205
    • /
    • 2017
  • A redundantly actuated planar 3-degree-of-freedom parallel mechanism is analyzed to show its high application potential as a haptic device. Its structure along with the closed form forward position solutions is briefly discussed. Then its geometric and kinematic characteristics via singularity analysis, the kinematic isotropy index, and the input-output force transmission ratio are investigated both for the redundantly actuated cases and for the non-redundantly actuated case. In addition, comparative joint torque simulations of the mechanism with different number of redundant actuations as well as without redundant actuation are conducted to confirm the improved joint torque distribution characteristics. Through these analyses it is shown that the geometric and kinematic characteristics of the redundantly actuated mechanism are superior to the ones of the mechanism without redundant actuation. Thus, it can be concluded that the suggested planar mechanism with redundant actuation has a very high potential for haptic device applications.