• Title/Summary/Keyword: force transmission ratio

Search Result 80, Processing Time 0.032 seconds

Tooth modification of helical gears for minimization of vibration and noise

  • Chong, Tae-Hyong;Myong, Jae-Hyong;Kim, Ki-Tae
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.5-11
    • /
    • 2001
  • Vibration and noise of gears is doc to the transmission error and the vibration exciting force caused by the periodically alternating tooth stiffness. Transmission error is the rotation delay between driving and driven gear caused by manufacturing error, alignment error in assembly and so on. Tooth stiffness changes with the proceeding mesh of teeth. The purpose of this study is to develop how to calculate simultaneously the optimum amounts of tooth profile modification. end relief and crowning by minimizing the vibration exciting force of helical gears. We estimate the vibration exciting force by the meshing analysis of gears. Formulated constraints of this problem consist of contact ratio and strengths of gear teeth such as tooth bending strength, surface durability, and scoring. ADS(Automated Design Synthesis) is used as an optimization tool. We also investigate the relation between the aspect ratio and the optimum values of tooth modification. The proposed method can calculate the optimum amount of tooth modification automatically and is expected to be practically useful to resolve the problem of vibration of helical gears.

  • PDF

Experimental Study on the Characteristics of Air-Chamber Structure (압기형구조물의 특성에 관한 실험적 연구)

  • Kim, W.K.;Kang, I.S.;Kwak, K.S.;Kim, D.S.
    • Journal of Korean Port Research
    • /
    • v.8 no.1
    • /
    • pp.31-40
    • /
    • 1994
  • Experimental study is carried out to verify the advantages of an air chamber structure in controlling the wave transformation and its dynamic responses. The open, cross and vertical mooring systems are employed in experiments to investigate the variations of wave transmission ratio, natural period of the structures and tensile force acting on the mooring line according to the change of the initial air depth inside the air chamber structure. Experimental results show that the air chamber floating structure expresses the smaller wave transmission ratio and tensile force acting on the mooring line than general one without air chamber, expecially in the long period region of incident wave. Therefore, it is concluded that the air chamber structure suggested in this study can play good roles as a wave controlling castal structure, and a substitute structure of a general floating structure.

  • PDF

Kinematic Analysis of Fault-Tolerant 3 Degree-of-Feedom Spherical Modules (고장에 강인한 구형 3자유도 모듈에 관한 기구학적 해석)

  • 이병주;김희국
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.2846-2859
    • /
    • 1994
  • This work deals with kinematic analysis of fault-tolerant 3 degree-of-freedom spherical modules which have force redundancies in its parallel structure. The performance of a redundantly actuated four-legged module with no actuator failure, a single actuator failure, partial and half failure of dual actuator are compared to that of a three-legged module, in terms of maximum force transmission ratio, isotropic characteristics, and fault-tolerant capability. Additionally, a system with an excess number of small floating actuators is considered, and the contribution of these small actuators to the force transmission and fault-tolerant capability is evaluated. This study illustrates that the redundant actuation mode allows significant saving of input actuation effort, and also delivers a fault tolerance.

Rocking Behavior of Steel Damper Shape (강재댐퍼 형상에 따른 록킹거동)

  • Lee, Hyun-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.4
    • /
    • pp.45-52
    • /
    • 2020
  • In this study, performance experiments were performed on the shape of steel dampers that affect the rocking behavior. Three types of strut shapes of SI type, SV type and SS type were considered as experimental variables. As a result of the experiment, the capacity to resist the moment and drift ratio according to the strut shape of the steel damper was evaluated as very close. Finally, it was evaluated that the SV type steel damper has stable deformation and energy dissipation capability. As a result of the evaluation of the proposed damper transmission force, it is considered that the damper transmission force is evaluated larger than the applied horizontal force, and it is necessary to supplement it.

Effective Friction Coefficient and Improved Formula of Speed Ratio-Torque-Thrust Relationship for Metal Belt CVT (금속벨트 CVT의 유효마찰계수와 개선된 변속비-토크-드러스트 관계식)

  • Lee, B.J.;Kim, H.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.226-233
    • /
    • 1998
  • In this paper, an experimental study was performed to investigate the speed ratio-torque-thrust characteristics for metal belt CVT. It is observed from the experimental results that nondimensional secondary thrust force follows with the existing theoretical formula with ${\mu}$=0.09~0.12 depending on the torque and the speed ratio. In order to represent these characteristics, an effective friction coefficient was introduced. Also, the slip characteristics between the belt and the pulley were investigated experimentally and traction coefficients at gross slip were obtained for various speed ratios. Using the traction coefficients and the effective friction coefficients, an improved formula for the secondary thrust force was suggested assuming that thrust force is the summation of the thrust of pseudo inactive arc and the thrust of pseudo active arc. The effective friction coefficient and the improved formula for the speed ratio-torque-thrust relationship suggested in this work can be used to obtain the appropriate secondary thrust.

  • PDF

Experimental study on transmission and stability of submerged breakwater (잠제의 전달율과 안정성에 관한 실험적 연구)

  • Kim, Yong-Woo;Yoon, Han-Sam;Kim, Hong-Jin;Ryu, Cheong-Ro;Sohn, Byung-Kyu
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.213-219
    • /
    • 2003
  • As the 2-D hydraulic experimental results for the submerged rubble-mound structure, we have concerned with their stability/function characteristics of structures by the effects of wave force, scour/deposition at the toe and wave transmission ratio at the lee-side sea. And as to investigate the variation characteristics of wave transmission ratio which depended to a geometrical structure of the submerged breakwater profiles, the critical conditions for the depth of submergence and crest width obviously presented. In summary, there results lead us to the conclusions that the wave control capabilities of submerged breakwaters by the variation of the submergence depth is high about 4 time degrees at the efficiency than the that of crest width. The destruction of covering block at the crest generated at the region which located between maximum damage curve, it maximum damage/failure station from the toe of the structure were 0.2L. As the wave transmission coefficient and the slope of the structure increase, the damage/failure ratio and the maximum scour depth at the toe was extended, respectively. When maximum scour depth happened. The destruction of covering block which located at the toe generated at the front slope destruction. Finally, it was found from the results that the optimization of structure may be obtained by the efficiently decision of the submergence depth and crest width in the permissible range of wave transmission ratio.

  • PDF

Estimation on the Wave Transmission and Stability/Function Characteristics of the Submerged Rubble-Mound Breakwater (수중 잠제구조물의 파랑 전달율과 안정성 및 기능성 평가)

  • KIM Yong Woo;YOON Han Sam;RYU Cheong Ro;SOHN Byung Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.5
    • /
    • pp.528-534
    • /
    • 2003
  • The 2-D hydraulic experimental results for the submerged rubble-mound structure, we have been concerned with the slability/function characteristics of the structures by the effects of wave force, scour/deposition at the toe and the wave transmission ratio at the lee-side sea. So, to investigate the variation characteristics of the wave transmission ratio which depended on a geometrical structure of the submerged breakwater profiles, the critical conditions for the depth of submergence and crest width were obviously presented. In summary, the results lead us to the conclusion that the wave control capabilities of submerged breakwaters by the variation of the submergence depth is higher than about 4 times the degree at the efficiency than the that of crest width. The destruction of the covering block at the crest generated at the region which was located between the maximum and minimum damage curve, and it's maximum damage/failure station from the toe of the structure was $0.2\;L_s.$ As the wave transmission coefficient and the slope of the structure increase, the damage/failure ratio and the maximum scour depth at the toe was extended, respectively. When the maximum scour depth happened, the destruction of the covering block which was located at the toe generated at the front of the submerged rubble-mound breakwater. Finally, it was found from the results that the optimization of the structure may be obtained by the efficient decision of the submergence depth and crest width in the permissible range of the wave transmission ratio.

Modeling of a Pneumatic Cylinder Position Control system Considering Transfer Characteristics of a Transmission Line (관로의 전달 특성을 고려한 공기압 실린더 위치 제어계의 모델링)

  • Jang, Ji-Seong;Kang, Bo-Sik;Ji, Sang-Won
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.731-736
    • /
    • 2004
  • In this study, a linearized model of pneumatic cylinder position control system including transmission line is proposed. The transmission line using compressible fluid has a nonlinear transfer characteristics because that the frequency response of it is changed by the flowing state of the fluid. But, when the pressure difference between both sides of transmission line is low, the effect of resonance characteristics of it under high frequency range can be neglected because of the friction force and low pass characteristics of the position control system. Therefore, the transmission line can be modeled by second order transfer function and the natural frequency, damping ratio and gain are changed by the diameter and length of it. The effectiveness of the proposed model is proved by comparison of simulation results using proposed model with experimental results and simulation results using conventional model.

  • PDF

Study on Continuously Variable System Using to Centrifugal Belt Pulley

  • Do, Hyung-jin;Youm, Kwang-Wook
    • International journal of advanced smart convergence
    • /
    • v.9 no.1
    • /
    • pp.10-18
    • /
    • 2020
  • In the case of a belt-pulley type CVT that transmits a driving force by using a variable pulley and a metal belt, slippage occurs due to transmission of power by using a belt, which results in a decrease in efficiency. Therefore, in this study, the rails were machined on the plate surface of the pulley to reduce the friction and slip between the belt and the pulley while applying the characteristics of the CVT. As the plate is rotated by the shape of the rail, a centrifugal belt pulley type continuously variable transmission system which shifts while varying the radius of rotation of the belt that transmits power is studied. Accordingly, the structure of the pulley was designed and the centrifugal belt pulley type continuously variable transmission was Manufactured. In addition, to verify the suitability of the manufactured transmission, the power transmission efficiency was monitored by establishing an interface with the controller. The structural analysis of the plate proved the suitability of the centrifugal belt pulley type continuously variable transmission.