• Title/Summary/Keyword: force tracking controller

Search Result 83, Processing Time 0.058 seconds

Modeling and Path-tracking of FourWheeled Mobile Robot with 2 D.O.F having the Limited Drive-Torques (제한된 구동 토크를 갖는 4륜 2 자유도 구류 로보트의 모델링과 경로추적)

  • 문종우;박종국
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.4
    • /
    • pp.1-10
    • /
    • 1996
  • In this paper are presented kinematic and dynamic modeling and path-tracking of fourwhelled mobile robot with 2 d.o.f. having the limited drivetorques. Controllability of wheeled-mobile robot is revealed by using the kinematic model. Instantaneously coincident coordinate cystem, force/torques generated by inverse dynamics exceed the limitation, we make wheeled-mobile robot follow the reference path by modifying the planned reference trajectory with time-scaling. The controller is introduced to compensate for error owing to modeling uncertainty and measurement noise. And simulation results prove that method proposed by this paper is efficient.

  • PDF

Dynamic Modeling and Path-tracking of Differential Drive Wheeled-Mobile Robots (구동토크의 제약을 갖는 차동 구륜이동로봇의 동역학 모델링과 경로추적)

  • Moon, Jong-Woo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.1
    • /
    • pp.45-51
    • /
    • 2002
  • In this paper are presented dynamic modeling and path-tracking of differential drive wheeled-mobile robots(WMRs) having the limited drive-torques. Instantaneously coincident coordinate system, force/torque propagation and Newton's equilibrium law are used to induce the dynamic model. When drive-torques generated by inverse dynamics exceed the limitation, we make wheeled-mobile robots follow the reference path by modifying the planned reference trajectory with time-scaling method. The controller is introduced to compensate for error owing to modeling uncertainty and measurement noise. And simulation results prove that method proposed by this paper is efficient.

Motion Synchronization of Control for Multi Electro-Hydraulic Actuators (가변구조제어기를 이용한 다중실린더 위치동조 제어)

  • Kim, Seong-Hoon;Seo, Jeong-Uk;Yoon, Young-Won;Park, Myeong-Kwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.9
    • /
    • pp.863-868
    • /
    • 2011
  • This paper presents a method to achieve a synchronous positioning objective for a dual-cylinder electro-hydraulic system with friction characteristics. The control system consists of a VSC (Variable Structure Controller) for each of the hydraulic cylinders and a PID (Proportional-Integral-Derivative) feedback controller. The PID controller is used for controlling the non-synchronous error generated by both cylinders when motion synchronization is carried out. To enhance the position-tracking performance of the individual cylinders friction characteristics is modeled in model, based on the estimated friction force. The simulation and experimental results show that the proposed method can effectively achieve the objective of position synchronization in the dualcylinder electro-hydraulic system, with maximum synchronization error with ${\pm}2\;mm$.

A stiffness control of a manipulator using a fuzzy model (퍼지몰텔을 이용한 매니퓰레이터의 강성 제어)

  • 김문주;이희진;조영완;김현태;박민용
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.11
    • /
    • pp.1-10
    • /
    • 1996
  • In this paper, we suggest a new identification method based on the takagi-sugeno fuzzy model which prepresents an envrionmental stiffness and propose a method to decide PD gains of the PD controller. It is difficult to perform a compliance task due to characteristics of robot itself and uncertain work envronment. Therefore, in this paper, we identify the fuzzy rule by dividing the relationship of input-output data into several piecewise-linear equations using the hough transform which is the one this fuzzy model, we propose a method to design the pD gain. We show the validity of this method by the experiment of tracking the surface of the paper box as an example of variable environment using robot manipulator and force sensing system. As a performance index, we use the settling time, and perform an analysis between conventional PD contorllers and this controller.

  • PDF

H Control on the Optical Image Stabilizer Mechanism in Mobile Phone Cameras (이동통신 단말기 카메라의 손떨림 보정 장치의 H 제어)

  • Lee, Chibum
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.3
    • /
    • pp.266-272
    • /
    • 2014
  • This study proposes a closed-loop shaping control method with $H_{\infty}$ optimization for optical image stabilization (OIS) in mobile phone cameras. The image stabilizer is composed of a horizontal stage constrained by ball bearings and actuated by the magnetic force from voice coil motors. The displacement of the stage is measured by Hall effect sensors. From the OIS frequency response experiment, the transfer function models of the stage and Hall effect sensor were identified. The weight functions were determined considering the tracking performance, noise attenuation, and stability with considerable margins. The $H_{\infty}$ optimal controller was executed using closed-loop shaping and limiting the controller order, which should be less than 6 for real-time implementation. The control algorithm was verified experimentally and proved to operate as designed.

Speed Control of a Direct Drive Motor Using a Neuro-Controller (신경제어기를 이용한 직접구동모터의 속도제어)

  • Cho, Jeong-Ho;Lee, Dong-Wook;Kim, Young-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1050-1052
    • /
    • 1996
  • This paper presents a neuro-control algorithm for the speed control of a direct drive motor without the knowledge of the dynamics of the motor and the characteristics of a nonlinear load. In the field of motor control, it is not possible to directly use the back-propagation method in order to train a network since the desired output of the network is not known. Hence, we propose an extended back-propagation algorithm to force the closed loop system to give desired results. Experimental results shown that the proposed neuro-controller can reduce the unknown load effects and have the good velocity tracking capabilities.

  • PDF

Depth and Course Controller Design of Autonomous Underwater Vehicles using H$_\infty$ Servo Control (H$_\infty$ 서보제어를 이용한 무인 수중운동체의 심도 및 방향제어기 설계)

  • 김인수;정금영;양승윤;조상훈;정찬희;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.215-215
    • /
    • 2000
  • In this paper, depth and course controllers of autonomous underwater vehicles using H$_{\infty}$ servo control are proposed. An H$_{\infty}$ servo problem is formulated to design the controllers satisfying a robust tracking property with modeling errors and disturbances. The solution of the H$_{\infty}$ servo problem is as follows: first, this problem is modified as an H$_{\infty}$ control problem for the generalized plant that includes a reference input mode, and then a sub-optimal solution that satisfies a given performance criteria is calculated by LMI(Linear Matrix Inequality) approach. The H$_{\infty}$ depth and course controllers ate designed to satisfy with the robust stability about the modeling error generated from the perturbation of the hydrodynamic coefficients and the robust tracking property under disturbances(wave force, wave moment, tide). The performances(the robustness to the uncertainties, depth and course tracking properties) of the designed controllers are evaluated with computer simulations, and finally these simulation results show the usefulness and application of the proposed H$_{\infty}$ depth and course control systems.

  • PDF

Control of Automatic Pipe Cutting Robot with Magnet Binder Using Learning Controller (반복학습제어기를 이용한 자석식 자동 파이프 절단 로봇의 제어)

  • Lee Sung-Whan;Kim Gook-Hwan;Rhim Sung-Soo;Lee Soon-Geul
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.541-546
    • /
    • 2005
  • Tracking control of an automatic pipe cutting robot (APCROMB) is studied. Using magnetic force APCROMB, which is designed and developed in Kyung Hee University, binds itself to the pipe and executes unmanned cutting process. The gravity effect on the movement of APCROMB varies as it rotates around the cylindrical pipe laid in the gravitational field. To maintain a constant velocity and consistent cutting performance against the varying gravitational effect, the authors adopt a multi-rate repetitive learning controller (MRLC), which learns the required effort to cancel the repetitive tracking errors caused by nonlinear effect. In addition to the varying gravity effect other types of nonlinear disturbances including backlash in the driving system and the slip between the wheels of APCROMB and the pipe also cause degradation in the cutting process. In order to identify those nonlinear disturbances the position estimation based on the encoder attached at the motor is not good enough. To identify the absolute angular position of APCROMB the authors propose the angular position estimation based on the signals from a MEMS-type two-axis accelerometer mounted on APCROMB. The tracking performances of APCROMB with a MRLC using the encoder-based position estimation is experimentally measured and results are shown. Also the difference between the encoder-based angular displacement measurement and the accelerometerbased angular displacement measurement is included.

  • PDF

Speed Control of the BLDC Motor using the Disturbance Observer (외란 관측기를 이용한 BLDC 전동기의 속도제어)

  • Jeon, Yong-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.10
    • /
    • pp.955-962
    • /
    • 2016
  • In this paper, we propose a design method for speed controller, current control of a Brushless Direct Current(: BLDC) motor using disturbance rejection techniques. Disturbance assumes a back electromotive force occurring in the electrical system and the variation of the load acting on the rotary shaft from the outside of the motor. And it assumed to be constant during the time interval and the Luenberger's observer design. So that the error of the observer about the system status can converge to zero show how to set the appropriate gain. Further, to stabilize the whole system, and proposes a method for setting the appropriate PI gain control to improve the tracking performance. By applying the proposed controller to 120W BLDC motors were tested for the ability to follow the velocity and current reference. Since the simulation results of the steady state error is within 0.1%, we were able to show the usefulness of the tracking performance of the proposed controller.

Robust Tracking and Human-Compliance Control Using Integral SMC and DOB (적분슬라이딩모드와 DOB를 이용한 강인추종 및 인간순응 로봇제어)

  • Asignacion Jr., Abner;Kim, Min-chan;Kwak, Gun-Pyong;Park, Seung-kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.416-422
    • /
    • 2017
  • The robot control with safety consideration is required since robots and human work together in the same space more frequently in these days. For safety, robots must have compliance to human force and robust tracking performance with high impednace for the nonhuman disturbances. The novel idea is proposed to achieve the compliance and high impedance with one controller structure. For the compliance, the ISMC(Integral Sliding Mode Control) and HDOB(Human Disturbance Observer) The human force is identified by using the human band pass filter and its output is sent to the sliding surface. The sliding mode dynamic is affected by human disturbance and the compliance for human is achieved. The disturbances besides human frequencies are decoupled by the ISMC and the robust tracking is achieved. The additional LDOB(Low Frequency Disturbance Observer) decreases the maxim nonlinear gain and leads low chattering. The introduction of human disturbance into the sliding mode dynamic is the main novel idea of this paper.