• Title/Summary/Keyword: force system

Search Result 7,842, Processing Time 0.035 seconds

An Analysis of Dynamic Cutting Force Model for Face Milling Using Modified Autoregressive Vector Model (자기회귀 벡터모델을 이용한 정면밀링의 동절삭력 모델해석)

  • 백대균;김정현;김희술
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.2949-2961
    • /
    • 1993
  • Dynamic cutting process can be represented by a closed-loop0 system consisted of machine tool structure and pure cutting process. On this paper, cutting system is modeled as a six degrees of freedom system using MARV(Modified Autoregressive Vector) model in face milling, and the modeled dynamic cutting process is used to predict dynamic cutting force component. Based on the double modulation principle, a dynamic cutting force model is developed. From the simulated relative displacements between tool and workpiece the dynamic force domponents can be calculated, and the dynamic force can be obtained by superposition of the static force and dynamic force components. The simulated dynamic cutting forces have a good agreement with the measured cutting force.

Comparison in Braking Force Characteristics for the Static and Dynamic Braking Force Inspection System about Vehicles in Service (운행 자동차에 대한 정적 및 동적 제동력 검사 시스템의 제동력 특성 비교)

  • Oh, Sangyeob
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.3
    • /
    • pp.344-351
    • /
    • 2015
  • Braking force inspection of vehicles in service is certainly one of the most important characteristics that affect vehicle safety. Up to now, in domestic country, the regular safety inspection of vehicles in service has been tested with a roller type brake test (a static braking force inspection system). But, in EU and USA etc. in recent years, it has been tested with a plate type brake test (a dynamic braking force inspection system). In this study, to compare the characteristics of above two test systems, the correlations for the results of braking force are evaluated statistically. As the results, in the case of main braking force, the range of the $R^2$ of the deviation for the left and right side is 0.5386 ~ 0.6231 in the rear axle and 0.0032 ~ 0.0052 in the front axle respectively, then the $R^2$ in the front axle is lower than that in the rear axle and the total variation is unexplained by the least-squares regression line statistically. Also, the p-value for the deviation of the left and right in the front axle is 0.4839 ~ 0.5755, then it has nonsignificant in the front axle. Therefore, the static braking force inspection system can not reflect the inertia force that there is a load transfer from the rear axle to the front axle during braking. Accordingly, it is necessary to adopt the dynamic braking force inspection system which can reflect the inertia force on the regular vehicle safety inspection in domestic country.

Modeling and experiment for the force/impact control via passive hardware damper

  • Oh, Y.H.;Chung, W.K.;Youm, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.172-178
    • /
    • 1993
  • This paper deals with the modeling and experiment of a robot system for force/impact control performance. The basic model is composed of a direct drive motor, servo amplifier, link, force sensor and environments. Based on the developed model, the stability of the whole system was analyzed via root locus method. For the force control, integral force compensation with velocity feedback method shows the best performance of all the explicit force control strategies. In dealing with impact, PID position control and the explicit force control method were implemented. Instead of add more damping to the robot system by velocity feedback, we developed a new passive damping method and it was also applied to enhance the damping characteristic of the system.

  • PDF

Establishment of The System for Checking Peak Recoil Force in a Pistol (권총의 최대반동력 측정 시스템 구축)

  • Park, Moon-Sun;Um, Hyuk;Ku, Tae-Wan;Kang, Beom-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.87-94
    • /
    • 1999
  • The peak recoil force in a pistol have an effect on the reliability of the frame and target shooting. The experimental system has been established for measurement of the peak recoil force, which consists of force and velocity sensors, high speed camera. For effective operation of the system, a software has also developed, and combined with the hardwares. Several pistols have been tested and compared quantitatively on the peak recoil force and impact energy. It is concluded that the established system can be utilzed for checking peak force, and data accumulation for new pistol design.

  • PDF

Development of Force Reflecting Joystick for Field Robot

  • Song, In-Sung;Ahn, Kyung-Kwan;Yang, Soon-Yong;Lee, Byung-Ryong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.132.5-132
    • /
    • 2001
  • In teleoperation field robotic system such as hydraulically actuated robotic excavator, the maneuverability and convenience is the most important part in the operation of robotic excavator. Particularly the force information is important in dealing with digging and leveling operation in the teleoperated excavator. Excavators are also subject to a wide variation of soil-tool interaction forces. This paper presents a new force reflecting joystick in a velocity-force type bilateral teleoperation system. The master system is electrical joystick and the slave system is hydraulically actuated cylinder with linear position sensor. Particularly Pneumatic motor is used newly in the master joystick for force reflection and the information of the pressure of salve cylinder is measured and utilized as the force feedback signal. Also force-reflection gain greatly affects the ...

  • PDF

A Study on the Measurement of Contact Force of Pantograph on High Speed Train

  • Seo Sung-Il;Cho Yong-Hyun;Mok Jin-Yong;Park Choon-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1548-1556
    • /
    • 2006
  • Appropriate contact force is required for the pantograph on the high speed train to collect current from the catenery system without separation. However, at high speed, large aerodynamic lifting force is generated by the contact plate and the body of pantograph, which may cause wear of the contact wire. In this study, to confirm the interface performance of the pantograph on Korea High Speed Train, a method to measure the contact force of the pantograph was proposed and the related measuring system was developed. The forces acting on the pantograph were clarified and a practical procedure to estimate the forces was proposed. A special device was invented and applied to measure the aerodynamic lifting force. Measured contact forces were displayed by the developed system and evaluated based on the criteria.

Mechanical Characterization of the Pedicle Screw System for Thoracolumbar Spine (흉요추용 척추경 나사못시스템의 기계적 특성)

  • 이효재;최화순;안면환;송정일
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.17-26
    • /
    • 2002
  • The purpose of this study was to investigate the important Parameters of the Pedicle screw by estimating the mechanical characteristics of screws under static and dynamic loads. Methodology for estimating Parameters under static load was proposed. It was also shown that the fatigue life of the one-level system could be increased by changing the shape of screws. Load parameters of the single pedicle screw were friction force. bending moment. and holding force. The test results of the one-level system could be inferred from teat results of the sin91e screw under bending force Fatigue life of the one-level system with flexible rod was longer than that of the upper Part test without rod . Considering the drop of flexibility of the rod due to muscles and ligament, fatigue life of the one-level system could be estimated b? that of the single screw.

Development of Calibration System for Multi-Axis Force/Moment Sensor and Its Uncertainty Evaluation (다축 힘/모멘트 센서 교정기의 개발 및 그의 불확도 평가)

  • Kim, Gab-Soon;Yoon, Jung-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.10
    • /
    • pp.91-98
    • /
    • 2007
  • This paper describes the development of the calibration system for a multi-axis force/moment sensor and its uncertainty evaluation. This calibration system can generate the continuous forces (${\pm}Fx,\;{\pm}Fy$ and ${\pm}Fz$) and moments (${\pm}Mx,\;{\pm}My$ and ${\pm}Mz$). Many kinds of multi-axis force/moment sensors in industries should be carried out the characteristic test or the calibration with the calibration system that can generate the forces and the moments. The calibration systems have been already developed are the disadvantages of the low capacity, the generation of step forces(10N, 20N ...) and step moments(1Nm, 2Nm ...) with weights, the high coasts in manufacture and so on. In this paper, the calibration system for a multi-axis force/moment sensor that can generate the continuous three forces and three moments was developed. Their ranges are $0{\sim}2000N$ in all force-directions and $0{\sim}400Nm$ in all moment-directions. And the system was evaluated in the expanded relative uncertainty. They were ${\pm}0.0004$ in all forces ${\pm}Fx,\;{\pm}Fy$ and ${\pm}Fz$, and ${\pm}0.0004$ in all moments ${\pm}Mx,\;{\pm}My$ and ${\pm}Mz$.

Research of the cutting force measuring system using feed drive system built in load cell (이송계에 부착시킨 로드셀을 이용한 절삭력 측정시스템에 관한 연구)

  • 강은구;이상조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.595-598
    • /
    • 2000
  • This paper presents new cutting force measuring system for milling process. Usually, tool dynamometer is the most appropriate measuring tool in an analysis of cutting mechanism. High price and limited space, however, make it difficult to be in-situ system for controllable milling process. Although an alternative using AC current of servomotor has been suggested, it is unsuitable for cutting force control because of low bandwidth and noise. We suggest new cutting force measuring system, using two load cell placed between moving table and nut of ballscrew, and modelled on the system statically and dynamically. And to verify the accuracy of the proposed system, a series of carefully conducted experiments were carried out. Experiment results show that models are in reasonably good agreement with the experiment data.

  • PDF

Intelligent Force Control of a Flip Chip Mounting System

  • Shim, Jae Hong;Cho, Young Im
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.3
    • /
    • pp.316-321
    • /
    • 2004
  • In this paper, we have developed a new mounting head system for flip chip. The proposed head system consists of a macro/micro positioning actuator for stable force control. The macro actuator provides the system with a gross motion while the micro device yields fine tuned motion to reduce the harmful impact force that occurs between very small sized electronic parts and the surface of a PCB(printed circuit board). In order to show the effectiveness of the proposed macro/micro chip mounting system, we compared the proposed system with the conventional chip mounting head equipped with a macro actuator only. A series of experiments were executed under the mounting conditions such as various access velocities and PCB stiffness. As a result of this study, a satisfactory voice coil actuator as the micro actuator has been developed, and its performance meet well the specifications desired for the design of the chip mounting head system and show good correspondence between theoretical analysis and experimental results.