• Title/Summary/Keyword: force support system

Search Result 334, Processing Time 0.025 seconds

A Study on method to construct system for u-Safe fire management support (u-Safe 소방대응지원 시스템 구축방안에 관한 연구)

  • Jeon, Jai-Pil;Yang, Hae-Sool
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.5
    • /
    • pp.1201-1209
    • /
    • 2008
  • In Seoul, there are lots of skyscrapers that have above 60 stories and buildings that have more than 8 basement levels, as well as massive distribution complex region which is connected to subways, departments, malls, hotels, and exhibition halls. When an accident, such as fire and explosion, happens in these areas or structures, if we can't find where fire-fighters are, who go into the building to suppress the fire, we couldn't be sure of their safety as well as effective command. Actually, it may cause much more damage itself and restrict either fire suppression or lifesaving. To protect people's life and properties as much as possible, this study will show the method to construct system of disaster-management supports with effective operation of fire force and scientific fire strategy in the scene by using Ubiquitous technique to enormous disasters.

Solution method for the classical beam theory using differential quadrature

  • Rajasekaran, S.;Gimena, L.;Gonzaga, P.;Gimena, F.N.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.6
    • /
    • pp.675-696
    • /
    • 2009
  • In this paper, a unified solution method is presented for the classical beam theory. In Strength of Materials approach, the geometry, material properties and load system are known and related with the unknowns of forces, moments, slopes and deformations by applying a classical differential analysis in addition to equilibrium, constitutive, and kinematic laws. All these relations are expressed in a unified formulation for the classical beam theory. In the special case of simple beams, a system of four linear ordinary differential equations of first order represents the general mechanical behaviour of a straight beam. These equations are solved using the numerical differential quadrature method (DQM). The application of DQM has the advantages of mathematical consistency and conceptual simplicity. The numerical procedure is simple and gives clear understanding. This systematic way of obtaining influence line, bending moment, shear force diagrams and deformed shape for the beams with geometric and load discontinuities has been discussed in this paper. Buckling loads and natural frequencies of any beam prismatic or non-prismatic with any type of support conditions can be evaluated with ease.

The Influence of Assembling Errors on the Performance of the Rotor Supported by Active Magnetic Bearings (조립오차가 능동 자기베어링으로 지지된 축의 성능에 미치는 영향)

  • Kim, Dae-Gon;Kim, Kyung-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.12
    • /
    • pp.3909-3916
    • /
    • 1996
  • Magnetic bearing is the machine element that supports the shaft without mechanical contact using the magnetic force induced by permanent magnet of electromagnet. Active magnetic bearing system is composed of sensor, controller, power amplifier, and electromagnet. If all the elements were dieal, shaft position could be controlled to sensor resolution, Because each elements inreal system have mechanical and electricla losses and nonlinearity, it is impossible to attain the desired performance using general control algorithm. So far it has been studied on improvement of the control algorithm of the electric characteristics of each elements. Another factors to affect shaft behavior are the manufacturing errors due to machine work, and assembling errors due to accumulate manufacturing errors of the radial magnetic bearing. This paper describes that the shaft behavior due to accumulate manufacturing errors and asymmetric bolting. This paper describes that the shaft behavior due to assembling errors of the radial bearings donot affect the rotaitonal accuracy of the shaft. But when the amplitude of the assembling errors increasees over the certain value, the bearing can not support the shaft properly.

An Analysis of Haeseong Guided Missile Reliability (Using Field Data) (해성 유도탄 발사체계 신뢰도 분석(야전운용제원 활용))

  • Hur, Jangwan;Min, Seungsik;Oh, Kyungwon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.142-143
    • /
    • 2017
  • As weapons systems are fused with advanced technologies, many of the expenses for research and development are favorites, and that group demands high reliability of weapons systems before the lifecycle. However, empirical studies on the reliability of defense weapons systems are restricted to lack of attention and limitation of data. In this research, we proposed the process of collecting field operation specifications based on the experience gathered by visiting directly to the weapons system operator's trap, strategy and maintenance support force (COMROKFLT, Naval Logistics Command, Naval Shipyard, production company). We used this to derive the operation MTBF of the solubility inducing bullet shooting system and compared it with the target value at the time of development.

  • PDF

The Steady-State Characteristic Analysis of 2MW PMSG based Direct-Drive Offshore Wind Turbine (2MW급 해상용 영구자석 직접 구동형 풍력 발전기의 정상상태 특성 해석)

  • Shin, Pyungho;Choi, Jungchul;Yoo, Chul;Kim, Daejin;Kyong, Namho;Ko, Heesang
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.3
    • /
    • pp.9-16
    • /
    • 2015
  • In order to support various studies for assessment of onshore and offshore wind turbine system including foundations, the land-based version of 2MW PMSG direct drive wind turbine has been analyzed using HAWC2 that account for the coupled dynamics of the wind inflow, elasticity, and controls of the turbine. this work presents the steady-state response of the system and natural frequency of the first thirteen structure turbine modes as a function of wind speed. Rotor, generator speeds, pitch angle, power production, thrust force, deflections of tower and blade are compared for one case below and one case above the rated wind speed.

Development of umbrella anchor approach in terms of the requirements of field application

  • Evirgen, Burak;Tuncan, Ahmet;Tuncan, Mustafa
    • Geomechanics and Engineering
    • /
    • v.18 no.3
    • /
    • pp.277-289
    • /
    • 2019
  • In this study, an innovative anchoring approach has been developed dealing with all relevant aspects in consideration of previous works. An ultimate pulling force calculation of anchor is presented from a geotechnical point of view. The proposed umbrella anchor focuses not only on the friction resistance capacity, but also on the axial capacity of the composite end structure and the friction capacity occurring around the wedge. Even though the theoretical background is proposed, in-situ application requires high-level mechanical design. Hence, the required parts have been carefully improved and are composed of anchor body, anchor cap, connection brackets, cutter vanes, open-close ring, support elements and grouting system. Besides, stretcher element made of aramid fabric, interior grouting system, guide tube and cable-locking apparatus are the unique parts of this design. The production and placement steps of real sized anchors are explained in detail. Experimental results of 52 pullout tests on the weak dry soils and 12 in-situ tests inside natural soil indicate that the proposed approach is conservative and its peak pullout value is directly limited by a maximum strength of anchored soil layer if other failure possibilities are eliminated. Umbrella anchor is an alternative to conventional anchor applications used in all types of soils. It not only provides time and workmanship benefits, but also a high level of economic gain and safe design.

Analysis of Inspection Interval according to the Operating Platform of Overseas Purchase Missile (국외구매 대함유도탄의 운용 플랫폼에 따른 검사 주기 분석)

  • Hur, Jang Wan
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.63-71
    • /
    • 2021
  • The South Korean Navy has operated Harpoon guided missiles through step-by-step acquisition after adopting them for the first time in 1978. As Harpoon guided missiles have been operated for a long time, it is necessary to make an active follow-up logistics support to guarantee their performance. Inspection of guided missiles is a basic activity to check the status of missiles. This study was conducted to check if the existing inspection interval of Harpoon guided missiles that have been operated for a long time was appropriate. Regarding research methods, based on the Navy's field operation materials, this study analyzed and presented inspection interval by section according to the period of operation, utilizing the Martinez's theory and a non-parametric MCF technique.

Design of Building Excavation Plane in Innovative Prestressed Scaffolding(IPS) System (혁신적 프리스트레스트 가시설 구조시스템(IPS)을 적용한 굴착면의 해석 및 설계)

  • Kim, Sung-Bo;Han, Man-Yop;Kim, Moon-Young;Jung, Kyoung-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.163-171
    • /
    • 2006
  • The behaviors and design procedures of building excavation plane in innovative prestressed support (IPS) system are presented in this paper. Determination procedure for initial pretension in IPS wale subjected to design earth pressure is derived. The computer analysis model under uniform and non-uniform earth pressure is constructed using beam element for the IPS wale, tension-only element for cable, and compression-only element for soil. Axial forces and bending moments of IPS wale under initial pretension and design earth pressure are calculated. The combined stresses due to these axial force and bending moment are calculated and safety condition of building excavation plane is investigated.

The Present State and Subject of Health Care Law System in Korea (우리나라 보건의료법의 현황과 과제 - 법정책학적 연구방법론을 중심으로 -)

  • Cho, Hyong Won
    • The Korean Society of Law and Medicine
    • /
    • v.14 no.1
    • /
    • pp.237-271
    • /
    • 2013
  • There is the limit of the traditional legal hermeneutics and fragmentary or individual theoretical legal approach to suggest the desirable solution of Korean health care law system to have many issues. Law & politics research is the legal research method to suggest the resonable understanding and seeking the measures through various approach, decide and evaluate that the legal methods can be functioned as the optimum system design. Law & politics research has some procedure. 1. It is demanded to catalog the comparison target of legal system by its topic. 2. It is demanded to compare it with Korean situation. 3. The realistic and empirical legal research to the compared policy alternatives is needed. 4. Reflecting the results of this research work, the desirable policy idea must be adopted. 5. The accomplishment of this policy idea must be come true as a specific legislation through interest coordination. 6. This plan must be come into force and the feedback to effect of society must be examined closely. Here I will review generally the contribution of law & politics research to health care law system because of the problem of time and the insufficiency of law & politics research. The constitutional consideration is important to support the interest coordination because of the shortage of resources. The comparative law research can compare our health care system with those of other countries and seek some desirable alternatives. If we discuss the law system plan in a long time and synthetically from different perspectives, more desirable helath care law system can be deducted.

  • PDF

3D Numerical Study on the Reinforcing Effect of Inclined System Bolting in NATM Tunnel (NATM 터널에서 경사 록볼트의 보강효과에 대한 3차원 해석)

  • Heo, June;Kim, Byoung-Il;Lee, Jea-Dug;Kim, Young-Geun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.3
    • /
    • pp.29-36
    • /
    • 2017
  • It has been known that rockbolt is one of important supports improving the support capacity with shotcrete in NATM tunnel. Also, it is necessary for the inclined system bolting to enhance the efficiency of installation in case of a narrow space such as cross passage and enlargement tunnel. However, there is no profound technical study for the effect of inclined rockbolt of systematic installation on the support mechanism and ground behaviour in NATM tunnel. In this study, the effects of the length and installation angle of rockbolt on the characteristics of support and ground reinforcement were analyzed by using 3D finite element numerical study. Through the numerical results for the parametric modelling of inclined rockbolt, the characteristics of mechanical behaviors between the axial force of rockbolt and the effect of ground reinforcement in regard to the various factors of the length and installation angle of rockbolt were verified and reviewed thoroughly. Also, it was shown that the installation angle of rockbolt for enhancing the arching effect in NATM tunnel was $45^{\circ}$, and the difference of the reinforcing effect for support between the installation angles of $75^{\circ}$ and $90^{\circ}$ was insignificant. The additional numerical studies for various condition would be carried out for practical design guideline of inclined rockbolt.