• Title/Summary/Keyword: force reduction (%)

Search Result 1,477, Processing Time 0.03 seconds

Optimal Cam profile for Elevator Door opening mechanism (엘리베이터 문짝의 최적 운동 곡선)

  • Jun, Kyoung-Jin;Sohn, Jeong-Hyun;Yoo, Wan-Suk
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.454-458
    • /
    • 2001
  • In this paper, contact between the coupler-roller and guide in elevator door mechanism is modeled and analyzed with DADS 3D program. The contact force of coupler-roller is an important factor for impact and noise reduction when doors of elevator are opened or closed. To minimize the maximum contact force, an optimal cam profile for the door guide is suggested. To find an optimal shape of the guide, several types of motion curve are tested with DADS contact module.

  • PDF

Active Control of Vibrational Intensity at a Reference Point in an Infinite, Elastic Plate (무한 탄성 평판상의 기준점에 전달되는 진동인텐시티의 능동제어)

  • 김기만
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.4
    • /
    • pp.22-30
    • /
    • 2001
  • In this paper, active control of vibrational intensity at a reference point in an infinite, elastic plate was discussed. The plate is excised harmonically by a vibrating source, which has a vertical point force. The optimal condition of controller was investigated to minimize the vibrational intensity being transmitted from the vibrating source to a reference point. Hence the method of feedforward control was employed for the control strategy and then the cost function was evaluated to find the optimal control force. Three types of control force (Vertical force, Moment, and Coupling force (a set of vertical force and moment) ) and controller's positions were examined to define the optimal condition of the controller. The vibrational intensity at a reference point was found to be reduced down to a zero level, compared with the uncontrolled case. Especially maximum reduction of vibrational intensity was achieved when the controller was collinearly positioned between a vibrating source and a reference point.

  • PDF

A Study on End-effector Friction of Constrained Spatial Flexible Manipulator (구속 받는 3차원 유연 매니퓰레이터 선단의 마찰에 관한 연구)

  • Kim, Jin-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.449-454
    • /
    • 2010
  • The force control of a constrained flexible manipulators has been one of the major research topics. However, a little effort has been devoted for the relation between friction force and elastic deflection of end-effector for a constrained flexible manipulator. So, the aim of this paper is to clarify the friction mechanism of a constrained spatial multi-link flexible manipulator by changing the material and connected method of end-effector. In this study, a concise hybrid position/force control scheme is applied to the control of a flexible manipulator, and the experimental results for the constrained vertical motion and constrained horizontal motion is presented. Finally a comparison between these results are presented to show the reduction of vibration of link and friction force.

A Study on the Reduction of Cogging Force of Stationary Discontinuous Armature Linear Synchronous Motor Using Auxiliary Teeth

  • Kim, Yong-Jae;Lee, Kyu-Myung;Watada, Masaya
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.281-287
    • /
    • 2011
  • The stationary discontinuous armatures that are used in permanent magnet linear synchronous motors (PM-LSMs) have been proposed as a driving source for transportation systems. However, the stationary discontinuous armature PM-LSM contains the outlet edges which always exist as a result of the discontinuous arrangement of the armature. For this reason, the high alteration of the outlet edge cogging force produced between the armature's core and the mover's permanent magnet when a mover passes the boundary between the armature's installation part and non-installation part has been indicated as a problem. Therefore, we have examined the outlet edge cogging force by installing the auxiliary teeth at the armature's outlet edge in order to minimize the outlet edge cogging force generated when the armature is arranged discontinuously. Moreover, we obtained the calculation by analyzing the shape of the auxiliary teeth in which the outlet edge cogging force is minimized the most.

Optimal Arrangement Method of Permanent Magnets for Reduction of Detent Force of a Linear Synchronous Motor (선형 동기전동기의 Detent Force 저감을 위한 영구자석 최적 배치방법)

  • Jung, In-Soung;Hur, Jin;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.3
    • /
    • pp.138-144
    • /
    • 2000
  • The detent force caused by the interaction of magnets with the teeth of a armature core deteriorates the driving performance of a permanent magnet linear synchronous motor. In this paper, we analyze the fields and forces of a linear synchronous motor with segmented or skewed magnet arrangement according to lateral overhang length of permanent magnets. For the analysis, the 3-dimensional equivalent magnetic circuit network method is used. The detent force and the static thrust are analyzed according to the segmented or skewed angle and the overhang length of permanent magnets, and the optimal angles that the detent force is minimized are found out in each case. The analysis results are compared with the experimental ones and shown a reasonable agreement.

  • PDF

Equivalent static wind loads analysis of tall television towers considering terrain factors of hilltops based on force measurement experiment

  • Ke, Shitang;Wang, Hao;Ge, Yaojun;Zhao, Lin;Cao, Shuyang
    • Structural Engineering and Mechanics
    • /
    • v.63 no.4
    • /
    • pp.509-519
    • /
    • 2017
  • Wind field in mountainous regions demonstrates unique distribution characteristic as compared with the wind field of the flat area, wind load and wind effect are the key considerations in structural design of television towers situated in mountainous regions. The television tower to be constructed is located at the top of Xiushan Mountain in Nanjing, China. In order to investigate the impact of terrain factors of hilltops on wind loads, firstly a wind tunnel test was performed for the mountainous area within 800m from the television tower. Then the tower basal forces such as bending moments and shear strength were obtained based on high frequency force balance (HFFB) test. Based on the experiments, the improved method for determining the load combinations was applied to extract the response distribution patterns of foundation internal force and peak acceleration of the tower top, then the equivalent static wind loads were computed under different wind angles, load conditions and equivalent goals. The impact of terrain factors, damping ratio and equivalent goals on the wind load distribution of a television tower was discussed. Finally the equivalent static wind loads of the television tower under the 5 most adverse wind angles and 5 most adverse load conditions were computed. The experimental method, computations and research findings provide important references for the anti-wind design of high-rise structure built on hilltops.

Dynamic Analysis Design of Balance Shaft for Reducing Engine Inertia Force and Pitching Moment (엔진 관성력과 피칭모멘트 저감을 위한 밸런스샤프트의 동역학 설계)

  • Kim, Byeong Jun;Boo, Kwang Suk;Kim, Heung Seob
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.4
    • /
    • pp.307-313
    • /
    • 2022
  • The importance of engine vibration reduction is increasing as the vehicle interior noise becomes more serious due to higher output and lighten weight trends. Recently, the balance shaft attachment has been proposed as a representative method for the engine vibration reduction. The balance shaft is a device that cancels the vibrations generated in the reciprocating motion of the piston and the conrod by using an arbitrary eccentric mass, and can improve fuel efficiency and ride comfort at the same time. This paper proposes the unbalance amount and shape of the balance shaft to induce and offset the inertia force generated by the engine structure. The proposed two-shaped balance shaft was implemented as an ADAMS multi-body dynamics model, and the reduction of the inertial force in the actual behavior was confirmed through dynamic simulation.

Drag Reduction of a Circular Cylinder With O-rings (O-ring 을 이용한 원주의 저항감소에 관한 실험적 연구)

  • Lim, Hee-Chang;Lee, Sang-Joon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2089-2094
    • /
    • 2003
  • The flow around a circular cylinder was controlled by attaching O-rings to reduce drag force acting on the cylinder. Four experimental models were tested in this study; one smooth cylinder of diameter D (D=60mm) and three cylinders fitted with O-rings of diameters d=0.0167D, 0.05D and 0.067D with pitches of PPD=1D, 0.5D and 0.25D. The drag force, mean velocity and turbulent intensity profiles in the near wake behind the cylinders were measured for Reynolds numbers based on the cylinder diameter in the range of $Re_D=7.8{\times}10^3{\sim}1.2{\times}10^5$. At $Re_D=1.2{\times}10^5$, the cylinder fitted with O-rings of d=0.0167D in a pitch interval of 0.25D shows the maximum drag reduction of about 5.4%, compared with the smooth cylinder. The drag reduction effect of O-rings of d=0.067D is not so high. For O-ring circulars, as the Reynolds number increases, the peak location of turbulence intensity shifts downstream and the peak magnitude is decreased. Flow field around the cylinders was visualized using a smoke-wire technique to see the flow structure qualitatively. The size of vortices and vortex formation region formed behind the O-ring cylinders are smaller, compared with the smooth cylinder.

  • PDF

Seismic force reduction factor for steel moment resisting frames with supplemental viscous dampers

  • Serror, M. Hassanien;Diab, R. Adel;Mourad, S. Ahmed
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.1171-1186
    • /
    • 2014
  • Damping is one of the parameters that control the performance of structures when they are subjected to seismic, wind, blast or other transient shock and vibration disturbances. By adding supplemental viscous dampers, the energy input from a transient deformation is absorbed, not only by the structure itself, but also by the supplemental dampers. The aim of this study is to evaluate the values of both damping and ductility reduction factors for steel moment resisting frames with supplemental linear viscous dampers. Two-dimensional finite element models have been established for a range of low to mid rise buildings with different parameters: number of floors; number of bays; and number of dampers with different supplemental damping ratios (from 5% to 30%). A parametric study has been performed using time history analyses and a well-documented research method (N2-method). In addition, an equation has been proposed for each reduction factor based on regression analysis for the obtained results. The results of the Time history analyses are compared with those of a modified N2-method. Moreover, a comparison with values specified in the European code EC8 and the Egyptian code ECP-201 has been performed.

Design of Tower Damper Gain Scheduling Algorithm for Wind Turbine Tower Load Reduction (풍력터빈 타워 하중 저감을 위한 타워 댐퍼 게인 스케줄링 알고리즘 설계)

  • Kim, Cheol-Jim;Kim, Kwan-Su;Paek, In-Su
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.2
    • /
    • pp.1-13
    • /
    • 2018
  • This paper deals with the NREL (National Renewable Energy Laboratory) 5-MW reference wind turbine. The controller which include MPPT (Maximum power point tracking) control algorithm and tower load reduction control algorithm was designed by MATLAB Simulink. This paper propose a tower damper algorithm to improve the existing tower damper algorithm. To improve the existing tower damper algorithm, proposed tower damper algorithm were applied the thrust sensitivity scheduling and PI control method. The thrust sensitivity scheduling was calculated by thrust force formula which include thrust coefficient table. Power and Tower root moment DEL (Damage Equivalent Load) was set as a performance index to verify the load reduction algorithm. The simulation were performed 600 seconds under the wind conditions of the NTM (Normal Turbulence Model), TI (Turbulence Intensity)16% and 12~25m/s average wind speed. The effect of the proposed tower damper algorithm is confirmed through PSD (Power Spectral Density). The proposed tower damper algorithm reduces the fore-aft moment DEL of the tower up to 6% than the existing tower damper algorithm.