• Title/Summary/Keyword: force moment sensor

Search Result 87, Processing Time 0.022 seconds

Performance Evaluation of An Intuitive Robot Teach Method Using a Force/moment Direction Sensor

  • Park, Myoung H.;Lee, Woo-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.78.1-78
    • /
    • 2002
  • A quantitative performance evaluation of an intuitive robot teach method is presented. $\textbullet$ Teach times for two types of teach tasks are compared to the conventional teach pendant method. $\textbullet$ Teach tasks requiring a 4 DOF motion and a 6 DOF motion were tested. $\textbullet$ Compared to the teach pendant method, the proposed method reduce the teach times to 75% and 55%. $\textbullet$ The intuitive teach method is easier for the untrained robot users.

  • PDF

A Study on Frictional Characteristics and Polishing Result of SiO2 Slurry in CMP (CMP시 SiO2 슬러리의 마찰 특성과 연마결과에 관한 연구)

  • Lee Hyunseop;Park Boumyoung;Seo Heondeok;Jung Jaewoo;Jeong Sukhoon;Jeong Haedo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.7 s.238
    • /
    • pp.983-989
    • /
    • 2005
  • The effects of mechanical parameters on the characteristics of chemical mechanical polishing(CMP) can be directly evaluated by friction force. The piezoelectric quartz sensor for friction force measurement was installed, and friction force could be detected during CMP process. Furthermore, friction energy can be calculated by multiplying relative velocity by integration of the friction force throughout the polishing time. $SiO_2$ slurry for interlayer dielectric(ILD) CMP was used in this experiment to consider the relation of frictional characteristics and polishing results. From this experiment, it is proven that the friction energy is an essential factor of removal rate. Also, the friction force is related to removal amount per unit length(dH/ds) and friction energy has corelation to the removal rate(dH/dt) and process temporature. Moreover, within wafer non-unifornity(WIWNU) is related to coefficient of friction because of the mechanical moment equilibrium. Therefore, the prediction of polishing result would be possible by measuring friction force.

Position Sensor Fault Tolerant Control of Permanent Magnet Synchronous Generator (영구자석 동기발전기의 위치센서 고장 회피 제어)

  • Lee, Kwang-Woon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.351-357
    • /
    • 2011
  • Rotor position is essentially required for vector control of permanent magnet synchronous generator(PMSG) and position sensor such as encoder are generally used for the purpose of position sensing. However, the use of position sensor degrades reliability of PMSG control system. This paper presents position sensor fault tolerant control method for PMSG control system. Sensorless position estimator based on extended electromotive force(EMF) is operated in parallel with sensored vector control to provide rapid reconfiguration capability to sensorless vector control at the moment of position sensor fault detection. Experimental results show the effectiveness of the proposed method.

A Study on the Piezoelectric Sensor Response Characteristic of PVDF Organic Thin Film by Vapor Deposition Method (진공증착법으로 제조된 PVDF 유기박막의 압전 센서 응답 특성에 관한 연구)

  • Park, Soo-Hong
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.5
    • /
    • pp.448-454
    • /
    • 2008
  • The purpose of this paper is to discuss the fabrication of $\beta$-PVDF($\beta$-Polyvinylidene fluoride, ${\beta}-PVF_2$) organic thin films through the vapor deposition method and to investigate the piezoelectric properties of the organic thin films produced. Vapor deposition was performed under the following conditions : the temperature of evaporator, the applied electric field and the pressure of reaction chamber were $270^{\circ}C$, 142.4 kV/cm and $2.0{\times}10^{-5}Torr$, respectively. The results showed that the amount of $\beta$-form PVDF increased from 72 % to 95.5 % with an increase in the substrate temperature. In the case of a sensor response characteristic by varying the force moment from $1.372{\times}10^{-5}N{\cdot}m$ to $39.2{\times}10^{-5}N{\cdot}m$, the output voltage increased from 1.39V to 7.04V.

The Prediction of the Dynamic Transmission Error for the Helical Gear System (헬리컬 기어계의 동적 전달오차의 예측)

  • Park, Chan-Il;Cho, Do-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1359-1367
    • /
    • 2004
  • The purpose of this study is to predict the dynamic transmission error of the helical gear system. To do so, the equations of motion in the helical gear system which consists of motor, coupling, gear, torque sensor, and brake are derived. As the input parameters, the mass moment of inertia by a 3D CAD software and the equivalent stiffness of the bearings and shaft are calculated and the coupling stiffness is measured. The static transmission error as an excitation is calculated by in-house program. Dynamic transmission error is predicted by solving the equations of motion. Mode shape, the dynamic mesh force and the bearing force are also calculated. In this analysis, the relationship between the dynamic mesh force and the bearing force and mode shape behavior in gear mesh are checked. As a result, the magnitude of mesh force is highly related with the gear mesh behavior in mode shape. The finite element analysis is conducted to find out the natural frequency of gear system. The natural frequencies by finite element analysis have a good agreement with the results by equation of motion. Finally, dynamic transmission error is measured by the specially designed experiment and the results by equation of motion are validated.

Development of Hand and Fingers Fixing System for Stroke Patient's Rehabilitation Exercise (뇌졸중 환자의 손가락 재활운동을 위한 손 및 손가락 고정장치 개발)

  • Kim, Hyeon-Min;Kim, Gab-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.7
    • /
    • pp.753-761
    • /
    • 2012
  • This paper describes development of a hand and finger fixing system for the rehabilitation exercise of patient's fingers. In order to exercise the finger rehabilitation using a finger rehabilitation robot, a patient's hand or fingers are fixed safely. In this paper, The hand and fingers fixing system can safely fix stroke patient's hand and fingers by pressing with force control system. The characteristic test of the system was carried out. It is thought that the system could be used for fixing their fingers in stroke patient's finger rehabilitation exercise.

Design and Evaluation of the Tension Sensor for Surgical Steel Wires (수술용 강선에 대한 인장력 측정센서의 설계 및 특성평가)

  • Joo, Jin-W;Lee, Bong-S
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.261-271
    • /
    • 1997
  • This paper presents the design process and characteristic test results of tension sensors for measuring the ultimate tension forces of surgical wires. Three types of sensor were designed and tested for calibration. The first two types which transfer the wire tension to the sensing element by direct contact have too much hysterisis errors due to the firctional effect. This error can be considerably reduced in the modified structure, where a cover and a loading button is used to transfer force and moment to the sensing element. The strains predicted by theoretical equations agree well with those by finite element calculations neglecting friction and the strains by finite element analysis considering friction are in good agreement with those measured by four strain gages. The modified ring type tension sensor developed in this paper is expected to be useful for measuring the tension of surgical wires with nonlinearity of 1.31%FS, hysterisis of 5.74%FS and repeatability of 0.19%FS.

Recognition of Tactilie Image Dependent on Imposed Force Using Fuzzy Fusion Algorithm (접촉력에 따라 변하는 Tactile 영상의 퍼지 융합을 통한 인식기법)

  • 고동환;한헌수
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.95-103
    • /
    • 1998
  • This paper deals with a problem occuring in recognition of tactile images due to the effects of imposed force at a me urement moment. Tactile image of a contact surface, used for recognition of the surface type, varies depending on the forces imposed so that a false recognition may result in. This paper fuzzifies two parameters of the contour of a tactile image with the membership function formed by considering the imposed force. Two fuzzifed paramenters are fused by the average Minkowski's dist; lnce. The proposed algorithm was implemented on the multisensor system cnmposed of an optical tact le sensor and a 6 axes forceltorque sensor. By the experiments, the proposed algorithm has shown average recognition ratio greater than 869% over all imposed force ranges and object models which is about 14% enhancement comparing to the case where only the contour information is used. The pro- ~oseda lgorithm can be used for end-effectors manipulating a deformable or fragile objects or for recognition of 3D objects by implementing on multi-fingered robot hand.

  • PDF

Rough Terrain Landing Technique of Quadcopter Based on 3-Leg Landing System (3-leg 랜딩 시스템 기반 쿼드콥터의 험지 착륙 기법)

  • Park, Jinwoo;Choi, Jiwook;Cheon, Donghun;Yi, Seungjoon
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.4
    • /
    • pp.438-446
    • /
    • 2022
  • In this paper, we propose an intelligent three-legged landing system that can maintain stability and level even on rough terrain than conventional four-legged landing systems. Conventional landing gear has the limitation that it requires flat terrain for landing. The 3-leg landing system proposed in this paper extends the usable range of the legs and reduces the weight, allowing the quadcopter to operate in various environments. To do this, kinematics determine the joint angles and coordinates of the legs of the two-link structure. Based on the angle value of the quadcopter detected via the IMU sensor, the leg control method that corrects the posture is determined. A force sensor attached to the end of the leg is used to detect contact with the ground. At the moment of contact with the ground, landing control starts according to the value of the IMU sensor. The proposed system verifies its reliability in various environments through an indoor landing test stand. Finally, in an outdoor environment, the quadcopter lands on a 20 degree incline and 20 cm rough terrain after flight. This demonstrates the stability and effectiveness of the 3-leg landing system even on rough terrain compared to the 4-leg landing system.

Tactile Sensing for Virtual Interaction as a Part of Ubiquitous Game Development (유비쿼터스게임의 상호작용 구성요소 개발을 위한 촉각응용)

  • Lee, Young-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.6
    • /
    • pp.1062-1068
    • /
    • 2007
  • In order to design and develop a ubiquitous game, it is necessary to develop a natural and flexible interface between the real world and the virtual world, based on social and physical context awareness. We design user interface model and the tactile sensing system that performs virtual interaction and collection of the sensor data. It is sensitive so the collected data should be filtered, rearranged and analyzed. This information is quite different from stylus input, keyboard, button or mouse for interaction. We detect kicked 3D force position of a ball, moment of area, moment of inertia and modified ball shape using tactile sensing system and analyzed data. The results demonstrate that the proposed approach is desirable and robust as well as the results can be used realistic actions and reactions considering attack force and to make interesting environments for ubiquitous game.