• Title/Summary/Keyword: force moment direction sensor

Search Result 14, Processing Time 0.023 seconds

Development of the Robot's Gripper Control System using DSP (DSP 를 이용한 로봇의 그리퍼 제어장치의 개발)

  • Kim Gab-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.77-84
    • /
    • 2006
  • This paper describes the design and implementation of a robot's gripper control system. In order to safely grasp an unknown object using the robot's gripper, the gripper should detect the force of gripping direction and the force of gravity direction, and should perform the force control using the detected forces and the robot's gripper control system. In this paper, the robot's gripper control system is designed and manufactured using DSP(Digital Signal Processor), and the gripper is composed of two 6-axis force/moment sensors which measures the Fx force(force of x-direction), Fy force, Fz force, and the Mx moment(moment of x-direction), My moment, Mz moment at the same time. The response characteristic test of the system is performed to determine the proportional gain Kp and the integral gain Ki of PI controller. As a result, it is shown that the developed robot's gripper control system grasps an unknown object safely.

Experiment of a 3D Motion Input Device (3차원 운동 입력장치 구현)

  • Lee, Woo-Won;Choi, Myoung-Hwan
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.173-178
    • /
    • 1999
  • In many areas of technology there are machines and systems controllable in up to six degrees of freedom. Helicopters and underwater vehicles, industrial robots are among the first representatives of this category. They need six degrees of freedom in order to move and orient within their workspace. An even broader and more explosively growing area is 3D computer graphics and virtual environment. In this work, functions of 3D input device are described and two types of commercial 3D input device are presented. Then, a preliminary experiment of a low cost 6 axis force/moment sensor is presented that can also be sued as a 3D input device. A low cost force/moment sensor and its application in robot teaching experiment is described. It computes the direction of 3 components of the force and 3 components of the moment applied by human holding the sensor by hand. The concept is shown by an experiment where the tool position and orientation of a robot in 3 dimensional space is controlled by the proposed sensor.

  • PDF

Performance Evaluation of An Intuitive Robot Teach Method Using a Force/moment Direction Sensor

  • Park, Myoung H.;Lee, Woo-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.78.1-78
    • /
    • 2002
  • A quantitative performance evaluation of an intuitive robot teach method is presented. $\textbullet$ Teach times for two types of teach tasks are compared to the conventional teach pendant method. $\textbullet$ Teach tasks requiring a 4 DOF motion and a 6 DOF motion were tested. $\textbullet$ Compared to the teach pendant method, the proposed method reduce the teach times to 75% and 55%. $\textbullet$ The intuitive teach method is easier for the untrained robot users.

  • PDF

A Study on Gripper Force Control Of Manipulator Using Tactile Image (Tactile 영상을 이용한 매니퓰레이터의 그리퍼 힘제어에 관한 연구)

  • 이영재;박영태
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.1
    • /
    • pp.64-70
    • /
    • 1999
  • When manipulator moves the objects, the object position error can be occurred because of acceleration or negative acceleration according to the direction. So we make manipulator working path for establishing optimal gripper force control preventing occurrence of object position error. And we attached the tactile sensor on the gripper of manipulator which gives us very specific information between manipulator and object. Reasoning of continuous tactile image data, manipulator can sense rotation and slippage and change the grasping force that corrects calculated grasping force and compensation can be possible of the object position error. We use the FSR(Force Sensing Resistor)sensor which consists of 22 by 22 taxels and continuous taxel number is used for filtering and using the moment method for sensing algorithm in our experiment.

  • PDF