• Title/Summary/Keyword: force decomposition

Search Result 143, Processing Time 0.025 seconds

An optimal regularization for structural parameter estimation from modal response

  • Pothisiri, Thanyawat
    • Structural Engineering and Mechanics
    • /
    • v.22 no.4
    • /
    • pp.401-418
    • /
    • 2006
  • Solutions to the problems of structural parameter estimation from modal response using leastsquares minimization of force or displacement residuals are generally sensitive to noise in the response measurements. The sensitivity of the parameter estimates is governed by the physical characteristics of the structure and certain features of the noisy measurements. It has been shown that the regularization method can be used to reduce effects of the measurement noise on the estimation error through adding a regularization function to the parameter estimation objective function. In this paper, we adopt the regularization function as the Euclidean norm of the difference between the values of the currently estimated parameters and the a priori parameter estimates. The effect of the regularization function on the outcome of parameter estimation is determined by a regularization factor. Based on a singular value decomposition of the sensitivity matrix of the structural response, it is shown that the optimal regularization factor is obtained by using the maximum singular value of the sensitivity matrix. This selection exhibits the condition where the effect of the a priori estimates on the solutions to the parameter estimation problem is minimal. The performance of the proposed algorithm is investigated in comparison with certain algorithms selected from the literature by using a numerical example.

Comparative Study on Surrogate Modeling Methods for Rapid Electromagnetic Forming Analysis

  • Lee, Seungmin;Kang, Beom-Soo;Lee, Kyunghoon
    • Transactions of Materials Processing
    • /
    • v.27 no.1
    • /
    • pp.28-36
    • /
    • 2018
  • Electromagnetic forming is a type of high-speed forming process to deform a workpiece through a Lorentz force. As the high strain rate in an electromagnetic-forming simulation causes infeasibility in determining constitutive parameters, we employed inverse parameter estimation in the previous study. However, the inverse parameter estimation process required us to spend considerable time, which leads to an increase in computational cost. To overcome the computational obstacle, in this research, we applied two types of surrogate modeling methods and compared them to each other to evaluate which model is best for the electromagnetic-forming simulation. We exploited an artificial neural network and we reduced-order modeling methods. During the construction of a reduced-order model, we extracted orthogonal bases with proper orthogonal decomposition and predicted basis coefficients by utilizing an artificial neural network. After the construction of the surrogate models, we verified the artificial neural network and reduced-order models through training and testing samples. As a result, we determined the artificial neural network model is slightly more accurate than the reduced-order model. However, the construction of the artificial neural network model requires a considerably larger amount of time than that of the reduced-order model. Thus, a reduced order modeling method is more efficient than an artificial neural network for estimating the electromagnetic forming and for the rapid approximation of structural simulations which needs repetitive runs.

Wind tunnel investigations on aerodynamics of a 2:1 rectangular section for various angles of wind incidence

  • Keerthana, M.;Harikrishna, P.
    • Wind and Structures
    • /
    • v.25 no.3
    • /
    • pp.301-328
    • /
    • 2017
  • Multivariate fluctuating pressures acting on a 2:1 rectangular section (2-D) with dimensions of 9 cm by 4.5 cm has been studied using wind tunnel experiments under uniform and smooth flow condition for various angles of wind incidence. Based on the variation of mean pressure coefficient distributions along the circumference of the rectangular section with angle of wind incidence, and with the aid of skin friction coefficients, three distinct flow regimes with two transition regimes have been identified. Further, variations of mean drag and lift coefficients, Strouhal number with angles of wind incidence have been studied. The applicability of Universal Strouhal number based on vortex street similarity of wakes in bluff bodies to the 2:1 rectangular section has been studied for different angles of wind incidence. The spatio-temporal correlation features of the measured pressure data have been studied using Proper Orthogonal Decomposition (POD) technique. The contribution of individual POD modes to the aerodynamic force components, viz, drag and lift, have been studied. It has been demonstrated that individual POD modes can be associated to different physical phenomena, which contribute to the overall aerodynamic forces.

Ferroelectric properties of $Bi_{3.25}La_{0.75}Ti_3O_{12}/LaNiO_3$ thin films prepared by metalorganic decomposition method (MOD법으로 제작한 $Bi_{3.25}La_{0.75}Ti_3O_{12}/LaNiO_3$ 박막의 강유전 특성에 관한 연구)

  • Kim, Kyoung-Tae;Kim, Chang-Il;Kim, Tae-Hyung;Lee, Cheol-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.352-355
    • /
    • 2003
  • [ $Bi_{3.25}La_{0.75}Ti_3O_{12}$ ] (BLT) thin films were prepared by using metal organic decomposition method onto the LaNiO3 (LNO) bottom electrode. Both the structure and morphology of the films were analyzed by x-ray diffraction (XRD) and atomic force microscope (AFM). Even at low temperatures ranging from 450 to $650^{\circ}C$, the BLT thin films were successfully deposited on LNO bottom electrode and exhibited (117) orientation. The BLT thin films annealed as low as $600^{\circ}C$ showed excellent ferroelectricity, higher remanent polarization and no significant degradation of switching charge at least up to $5{\times}10^9$ switching cycles at a frequency of 100 kHz and 5 V. For the annealing temperature of $600^{\circ}C$, the remanent polarization $P_r$ and coercive field were $23.5\;{\mu}C/cm^2$ and 120 kV/cm, respectively.

  • PDF

Finite element formulation and analysis of Timoshenko beam excited by transversely fluctuating supports due to a real seismic wave

  • Kim, Yong-Woo;Cha, Seung Chan
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.971-980
    • /
    • 2018
  • Using the concept of quasi-static decomposition and using three-noded isoparametric locking-free element, this article presents a formulation of the finite element method for Timoshenko beam subjected to spatially different time-dependent motions at supports. To verify the validity of the formulation, three fixed-hinged beams excited by the real seismic motions are examined; one is a slender beam, another is a stocky one, and the other is an intermediate one. The numerical results of time histories of motions of the three beams are compared with corresponding analytical solutions. The internal loads such as bending moment and shearing force at a specific time are also compared with analytic solutions. These comparisons show good agreements. The comparisons between static components of the internal loads and the corresponding total internal loads show that the static components predominate in the stocky beam, whereas the dynamic components predominate in the slender one. Thus, the total internal loads of the stocky beam, which is governed by static components, can be predicted simply by static analysis. Careful numerical experiments indicate that the fundamental frequency of a beam can be used as a parameter identifying such a stocky beam.

Long-term monitoring of super-long stay cables on a cable-stayed bridge

  • Shen, Xiang;Ma, Ru-jin;Ge, Chun-xi;Hu, Xiao-hong
    • Wind and Structures
    • /
    • v.27 no.6
    • /
    • pp.357-368
    • /
    • 2018
  • For a long cable-stayed bridge, stay cables are its most important load-carrying components. In this paper, long-term monitoring of super-long stay cables of Sutong Bridge is introduced. A comprehensive data analysis procedure is presented, in which time domain and frequency domain based analyses are carried out. In time domain, the vibration data of several long stay cables are firstly analyzed and the standard deviation of the acceleration of stay cables, and its variation with time are obtained, as well as the relationship between in-plane vibration and out-plane vibration. Meanwhile, some vibrations such as wind and rain induced vibration are detected. Through frequency domain analysis, the basic frequencies of the stay cables are identified. Furthermore, the axial forces and their statistical parameters are acquired. To investigate the vibration deflection, an FFT-based decomposition method is used to get the modal deflection. In the end, the relationship between the vibration amplitude of stay cables and the wind speed is investigated based on correlation analysis. Through the adopted procedure, some structural parameters of the stay cables have been derived, which can be used for evaluating the component performance and corresponding management of stay cables.

Feedback Flow Control Using Artificial Neural Network for Pressure Drag Reduction on the NACA0015 Airfoil (NACA0015 익형의 압력항력 감소를 위한 인공신경망 기반의 피드백 유동 제어)

  • Baek, Ji-Hye;Park, Soo-Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.9
    • /
    • pp.729-738
    • /
    • 2021
  • Feedback flow control using an artificial neural network was numerically investigated for NACA0015 Airfoil to suppress flow separation on an airfoil. In order to achieve goal of flow control which is aimed to reduce the size of separation on the airfoil, Blowing&Suction actuator was implemented near the separation point. In the system modeling step, the proper orthogonal decomposition was applied to the pressure field. Then, some POD modes that are necessary for flow control are extracted to analyze the unsteady characteristics. NARX neural network based on decomposed modes are trained to represent the flow dynamics and finally operated in the feedback control loop. Predicted control signal was numerically applied on CFD simulation so that control effect was analyzed through comparing the characteristic of aerodynamic force and spatial modes depending on the presence of the control. The feedback control showed effectiveness in pressure drag reduction up to 29%. Numerical results confirm that the effect is due to dramatic pressure recovery around the trailing edge of the airfoil.

DMD based modal analysis and prediction of Kirchhoff-Love plate (DMD기반 Kirchhoff-Love 판의 모드 분석과 수치해 예측)

  • Shin, Seong-Yoon;Jo, Gwanghyun;Bae, Seok-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.11
    • /
    • pp.1586-1591
    • /
    • 2022
  • Kirchhoff-Love plate (KLP) equation is a well established theory for a description of a deformation of a thin plate under certain outer source. Meanwhile, analysis of a vibrating plate in a frequency domain is important in terms of obtaining the main frequency/eigenfunctions and predicting the vibration of plate. Among various modal analysis methods, dynamic mode decomposition (DMD) is one of the efficient data-driven methods. In this work, we carry out DMD based modal analysis for KLP where thin plate is under effects of sine-type outer force. We first construct discrete time series of KLP solutions based on a finite difference method (FDM). Over 720,000 number of FDM-generated solutions, we select only 500 number of solutions for the DMD implementation. We report the resulting DMD-modes for KLP. Also, we show how DMD can be used to predict KLP solutions in an efficient way.

Effect of Biodegradable Polymer Coating on the Corrosion Rates and Mechanical Properties of Biliary Magnesium Alloy Stents (생분해성 고분자 코팅이 담관용 마그네슘 합금 스텐트의 분해 속도와 기계적 물성에 미치는 영향)

  • Kim, Hyun Wook;Lee, Woo-Yiel;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.36-43
    • /
    • 2020
  • A biliant stent was fabricated using a magnesium alloy wire, a biodegradable metal. In order to control the fast decomposition and corrosion of magnesium alloys in vivo, magnesium alloy wires were coated with biodegradable polymers such as polycaprolactone (PCL), poly(propylene carbonate) (PPC), poly (L-lactic acid) (PLLA), and poly (D, L-lactide-co-glycolide) (PLGA). In the case of PPC, which is a surface erosion polymer, there is no crack or peeling compared to other polymers (PCL, PLLA, and PLGA) that exhibit bulk erosion behavior. Also, the effect of biodegradable polymer coating on the axial force, which is the mechanical property of magnesium alloy stents, was investigated. Stents coated with most biodegradable polymers (PCL, PLLA, PLGA) increased axial forces compared to the uncoated stent, reducing the flexibility of the stent. However, the stent coated with PPC showed the axial force similar to uncoated stent, which did not reduce the flexibility. From the above results, PPC is considered to be the most efficient biodegradable polymer.

A comparison study of water impact and water exit models

  • Korobkin, Alexander;Khabakhpasheva, Tatyana;Malenica, Sime;Kim, Yonghwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.1182-1196
    • /
    • 2014
  • In problems of global hydroelastic ship response in severe seas including the whipping problem, we need to know the hydrodynamic forces acting on the ship hull during almost arbitrary ship motions. In terms of ship sections, some of them can enter water but others exit from water. Computations of nonlinear free surface flows, pressure distributions and hydrodynamic forces in parallel with the computations of the ship motions including elastic vibrations of the ship hull are time consuming and are suitable only for research purposes but not for practical calculations. In this paper, it is shown that the slamming forces can be decomposed in two components within three semi-analytical models of water entry. Only heave motion is considered. The first component is proportional to the entry speed squared and the second one to the body acceleration. The coefficients in these two components are functions of the penetration depth only and can be precomputed for given shape of the body. During the exit stage the hydrodynamic force is proportional to the acceleration of the body and independent of the body shape for bodies with small deadrise angles.