• Title/Summary/Keyword: food spoilage

Search Result 293, Processing Time 0.033 seconds

Perspectives for the Industrial Use of Bacteriocin in Dairy and Meat Industry (축산업 분야에서의 박테리오신의 산업적 이용 및 향후 전망)

  • Lee, Na-Kyoung;Lee, Joo-Yeon;Kwak, Hyung-Geun;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • More safe and natural food was recently needed by consumers. Antimicrobials including sodium azide, penicillin, and vancomycin were used for therapeutic agents against pathogens such as Listeria monocytogenes, Staphylococcus aureus, Escherichia coli O157:H7 in dairy and meat industry. These antimicrobials and preservatives were prohibited in stock farm and food because they were caused resistant strain and side effects. Bacteriocins are proteinaceous compounds that may present antimicrobial activity towards important food-borne pathogens and spoilage-related microflora. Therefore, bacteriocins were reported as an alternative of antimicrobials. Due to these properties, bacteriocin-producing strains or purified bacteriocins have a great potential of use in biologically based food preservation systems. Despite the growing number of articles regarding on the isolation of bacteriocinogenic strains, genetic determinants for production, purification and biochemical characterization of these inhibitory substances, there are only limited reports of successful application of bacteriocins to dairy and meats. This review describes bacteriocins related to dairy and meat products for the further use.

Antimicrobial Effect of Lithospermum erythrorhizon Extracts on the Food-borne Pathogens (지치추출물의 식중독성 미생물에 대한 항균효과)

  • Bae, Ji-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.5
    • /
    • pp.823-827
    • /
    • 2004
  • Antimicrobial effect of Lithospermum erythrorhizon extracts against food-borne pathogens was investigated. L. erythrorhizon was extracted with methanol at room temperature, and the extraction was sequentially fractionated using petroleum ether, chloroform, ethyl acetate, and methanol. Antimicrobial activity of L. erythrorhizon extracts was determined using paper disc method against food-borne pathogens and food spoilage bacteria. Ethyl acetate extracts of L. erythrorhizon showed the highest activity against Staphylococcus aureus and Shigella dysenteriae. Synergistic effect was found in combined extracts of L. erythrorhizon and Sophora subprostrata as compared with each extract alone. Growth inhibition curve was determined using ethyl acetate extracts of L. erythrorhizon, against S. aureus and S. dysenteriae. Ethyl acetate extract of L. erythrorhizon, showed strong antimicrobial activity against S. aureus at 4,000 ppm, retarding growth of S. aureus more than 48 hr and S. dysenteriae up to 12 hr.

Evaluation of Efficacy of Sanitizers and Disinfectants Marketed in Korea (국내 유통 중인 주요 살균소독제의 유효성 평가)

  • Lee, Min-Jeong;Kim, Yong-Su;Cho, Yang-Hee;Park, Hee-Kyung;Park, Byung-Kyu;Lee, Kwang-Ho;Kang, Kil-Jin;Jeon, Dae-Hoon;Park, Ki-Hwan;Ha, Sang-Do
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.671-677
    • /
    • 2005
  • Conformity to legal permission standard of $5\;log_{10}$ CFU/mL reduction of foodborne pathogens or spoilage bacteria such as Escherichia coli, Staphylococcus aureus, Salmonella typhimurium, Pseudomonas aruginosa, and Enterococcus hirae was examined in 11 domestic commercial sanitizers and disinfectant. One chlorine compound, two iodophor compounds, two peroxide compounds, and three quaternary ammonium compounds (QACs) met advised standard concentration (100%), showing $7\;log_{10}$ CFU/mL reduction, and met legal standard by $5-6\;log_{10}$ CFU/mL reduction at 75% of advised standard concentration. At 10% dilution, one chlorine compound, one iodophor compound, two peroxide compounds, and two QACs satisfied legal standard.

Effects of Organic Acids on the Storability of Chilled Beef (유기산에 의한 냉장우육의 저장효과)

  • Jung, Hae-Man;Lee, Kyu-Han
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.379-387
    • /
    • 1991
  • The effects of organic acids (acetic, citric and lactic acids) treatment on microbial spoilage of chilled beef were studied during aerobic storage at $4^{\circ}C$ for 11 days. The organic acids had definite effects on the delay of the development of off-odor and slime of chilled beef. When chilled beef slices were treated with 1, 2, 3 and 4% of organic acids, off-odor was developed 1, 2, 3 and 5 days later than control, respectively, regardless of the kinds of organic acid. The slime was produced two days after the day of off-odor development in $1{\sim}3%$ organic acid-treated chilled beef, but no slime was produced on chilled beef treated with 4% organic acid. The off-odor was detected organoleptically when pH and number of microorganisms of chilled beef were, $5.6{\sim}5.8\;and\;0.8{\times}10^7{\sim}1.8{\times}10^7\;cell/cm^2$, respectively, and slime was observed when pH and number of microorganisms of chilled beef were $5.9{\sim}6.2\;and\;2.0{\times}10^7{\sim}6.0{\times}10^7\;cell/cm^2$, respectively, in control and treated groups.

  • PDF

Antimicrobial Characteristic of Prunus mune extract (매실추출물의 항균특성)

  • Ha Myung-Hee;Park Woo-Po;Lee Seung-Cheol;Choi Sung-Gil;Cho Sung-Hwan
    • Food Science and Preservation
    • /
    • v.13 no.2
    • /
    • pp.198-203
    • /
    • 2006
  • Prunus mume extract showed antimicrobial efface remarkably against the wide spectrum of putrefactive and food spoilage microorganisms above 250 ppm of concentration. Their thermal and pH stabilities were effective under the range of temperature $(40^{\circ}C{\sim}120^{\circ}C)$ and $pH(3{\sim}11)$. Prunus mume extract seemed to be a natural antimicrobial ideally with the view of their effectiveness and thermal & pH stabilities. In addition, their action modes suggested that their hydrophillic components would perturb the fucntions of microbial cell membranes synergistically.

Antimicrobial Activity of Kefir against Various Food Pathogens and Spoilage Bacteria

  • Kim, Dong-Hyeon;Jeong, Dana;Kim, Hyunsook;Kang, Il-Byeong;Chon, Jung-Whan;Song, Kwang-Young;Seo, Kun-Ho
    • Food Science of Animal Resources
    • /
    • v.36 no.6
    • /
    • pp.787-790
    • /
    • 2016
  • Kefir is a unique fermented dairy product produced by a mixture of lactic acid bacteria, acetic acid bacteria, and yeast. Here, we compared the antimicrobial spectra of four types of kefirs (A, L, M, and S) fermented for 24, 36, 48, or 72 h against eight food-borne pathogens. Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, Enterococcus faecalis, Escherichia coli, Salmonella Enteritidis, Pseudomonas aeruginosa, and Cronobacter sakazakii were used as test strains, and antibacterial activity was investigated by the spot on lawn method. The spectra, potencies, and onsets of activity varied according to the type of kefir and the fermentation time. The broadest and strongest antimicrobial spectrum was obtained after at least 36-48 h of fermentation for all kefirs, although the traditional fermentation method of kefir is for 18-24 h at $25^{\circ}C$. For kefir A, B. cereus, E. coli, S. Enteritidis, P. aeruginosa, and C. sakazakii were inhibited, while B. cereus, S. aureus, E. coli, S. Enteritidis, P. aeruginosa, and C. sakazakii were inhibited to different extents by kefirs L, M, and S. Remarkably, S. aureus, S. Enteritidis, and C. sakazakii were only inhibited by kefirs L, M, and S, and L. monocytogenes by kefir M after fermentation for specific times, suggesting that the antimicrobial activity is attributable not only to a low pH but also to antimicrobial substances secreted during the fermentation.

Identification, Characteristics, and Growth Inhibition of the Strain Isolated from Spoiled Wet Noodle

  • Kim, Hyeong-Hyoi;Jeong, Eun-Jeong;Jeong, Do-Yeong;Kim, Yong-Suk;Shin, Dong-Hwa
    • Food Science and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.461-465
    • /
    • 2005
  • To determine the cause of wet noodle spoilage, microorganisms isolated from wet noodles were identified and characterized. In addition, the growth inhibitory effects of organic acid mixture (OA: lactic acid 27.8%, acetic acid 12.0%, succinic acid 1.0%) and sodium dehydroacetate (SD) on the isolated strain were estimated in nutrient broth medium. The isolated strain was Gram-positive, rod shaped, motile, and spore forming. Based on physiological characteristics and the API 50 CHB-kit test results for the assimilation of 49 carbohydrates, the isolated strain was identified as Bacillus amyloliquefaciens (92.6%), which is able to degrade starch. Decimal reduction times (D-values) at 100, 105, and $110^{\circ}C$ for spores of B. amyloliquefaciens were 8.5, 5.1, and 2.5 min, respectively, and the z-value was $12.8^{\circ}C$. We estimated that B. amylo-liquefaciens isolated from spoiled wet noodles was a thermophilic species having high heat-resistance. Viable cell numbers in wet noodles and broth medium inoculated with B. amyloliquefaciens were decreased by 2-4 log cycles by combined treatment with 0.03 or 0.05% OA and 0.3% SD. These results revealed that OA combined with SD could be used as a potential agent to inhibit B. amyloliquefaciens in wet noodles.

Antimicrobial Effects of Ethanol Extracts from Korean and Indonesian Plants (국내 및 인도네시아산 식물의 에탄올 추출물의 항균효과)

  • Kim, Moo-Sung;Lee, Dong-Cheol;Hong, Jong-Eun;Chang, Ih-Seop;Cho, Hong-Yon;Kwon, Yong-Kwan;Kim, Hee-Yun
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.949-958
    • /
    • 2000
  • Antimicrobial effects of 150 kinds of Korean and 82 kinds of Indonesian plants were investigated to develope natural food preservatives. Extracts of the plants with 70% ethanol were tested their antimicrobial effects against several food spoilage microorganisms, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans and Aspergillus niger. Seventeen kinds of Korean and eighteen kinds of Indonesian plants were found relatively effective, of which Myristica fragrans and Melaleuca leucadendra were the most effective, respectively. The major fractions of the two plant extracts showing antimicrobial activity were further purified by solvent fractionation, silicagel column chromatography and preparative HPLC. The purified substances were identified as limonene and caprylic acid in M. fragrans, and ${\alpha}-terpineol$ in M. leucadendra, respectively.

  • PDF

Study on Heat Resistant Putrefactive Spore Formers in Korean Soil and Processed Foods -Part 1. Survey on regional distribution of spore forming bacteria- (가공식품(加工食品)의 내열성부패균(耐熱性腐敗菌) 분포(分布) 조사연구(調査硏究) -(제(第) 1 보(報)) 지역별(地域別) 아포형성균(芽胞形成菌) 조사(調査)-)

  • Koo, Young-Jo;Shin, Dong-Hwa;Kim, Choung-Ok;Min, Byoung-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.224-230
    • /
    • 1978
  • Heat resistant putrefactive microorganisms causing spoilage of canned and processed foods were surveyed in the compost on mushroom growing bed, casing soil, raw mushrooms and canned products before sterilization at canneries located at 8 places including Buyo in Chung-Cheung-Do and monitored the total count and spore formers from the sample taken. The 9 strains of most severe heat resistant among the selected 140 spore formers were selected and determined D and Z value by TDT method. The most strong heat resistant strain was No. F-10, facultative thermophile, which was isolated from raw mushroom in Buyo area and it's Z value was $21.1^{\circ}F$ (M/15 phosphate buffer solution) and $D^{250}$ was 6.6 min.

  • PDF

Antimicrobial Activity and Stability of Tetrasodium Pyrophosphate Peroxidate (과산화피로인산나트륨의 항균성 및 안정성)

  • Lee, Jong-Hoon;Kim, Il-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.1040-1044
    • /
    • 1998
  • Tetrasodium pyrophosphate peroxidate can be crystallized as a hydrogen-peroxide-bound salt from the solution of tetrasodium pyrophosphate and hydrogen peroxide. The antimicrobial activity and stability of the compound were tested for the use as a food preservative. It showed antimicrobial activities against several food spoilage microorganisms at the concentration of 0.1% (w/v), and was stable for 80 days in room temperature as a form of 70% hydrogen-peroxide-bound tetrasodium pyrophosphate peroxidate. It was also stable at the boiling temperature but decomposed significantly in the presence of metal ions. The compound can be an effective food preservative at the 0.2% (w/v) concentration, which contains 0.03% (v/v) hydrogen peroxide. The compound could be commercialized if the application area and usage direction as well as the removal method of hydrogen peroxide were developed.

  • PDF