• Title/Summary/Keyword: food spoilage

Search Result 293, Processing Time 0.026 seconds

Studies on the Improvement of Storage Property in Meat Sausage Using Chitosan- II Difference of Storage Property by Molecular Weight of Chitosan (키토산 첨가에 의한 축육 소시지의 보존성 개선에 관한 연구- II 키토산의 분자량에 따른 보존성의 차이)

  • 윤선경;박선미;안동현
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.5
    • /
    • pp.849-853
    • /
    • 2000
  • This study was examined for antibacterial effect of various molecular weight of chitosan against spoilage bacteria in emulsion sausage. Four different kinds of chitosan, molecular weights (M.W.) of 1 kDa, 5 kDa, 30 kDa and 120 kDa, wee used. The more molecular weight of chitosan is high, the more storage property of sausage is good during storage at $30^{\circ}C$. Storage properties of sausages between added 0.5% of M.W. 120 kDa chitosan and 150 ppm of sodium nitrite were about the same. Effect of growth-inhibitory of spoilage bacteria was not detected 0.2% of M.W. 1kDa chitosan 0.2% of M.W. 5kDa chitosan have growth-inhibitory effect over 80% against only 3 strains among bacteria isolated from spoiled emulsion sausage. But, 0.2% of M.W. 30 kDa chitosan have growth-inhibitory effect of 80% against all strains of bacteria related to spoilage of emulsion sausage, except S. typhimurium, Especially, 0.2% of M.W. 120 kDa chitosan inhibited over 80% growth against all strains used in this study. The antibacterial activity was increased with their molecular weight.

  • PDF

Microbial Quality Change Model of Korean Pan-Fried Meat Patties Exposed to Fluctuating Temperature Conditions

  • Kim, So-Jung;An, Duck-Soon;Lee, Hyuek-Jae;Lee, Dong-Sun
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.4
    • /
    • pp.348-353
    • /
    • 2008
  • Aerobic bacterial growth on Korean pan.fried meat patties as a primary quality deterioration factor was modeled as a function of temperature to estimate microbial spoilage on a real.time basis under dynamic storage conditions. Bacteria counts in the stretch.wrapped foods held at constant temperatures of 0, 5, 10 and $15^{\circ}C$ were measured throughout storage. The bootstrapping method was applied to generate many resampled data sets of mean microbial counts, which were then used to estimate the parameters of the microbial growth model of Baranyi & Roberts in the form of differential equations. The temperature functions of the primary model parameters were set up with confidence limits. Incorporating the temperature dependent parameters into the differential equations of bacterial growth could produce predictions closely representing the experimental data under constant and fluctuating temperature conditions.

Effects of Aqueous Ozone Combined with Organic Acids on Microflora Inactivation in the Raw Materials of Saengsik

  • Bang, Woo-Suk;Eom, Young-Ran;Eun, Jong-Bang;Oh, Deog-Hwan
    • Food Science and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.958-962
    • /
    • 2007
  • This study was conducted to determine the effects of microorganism inactivation using 3 ppm of aqueous ozone (AO), 1% citric acid, 1% lactic acid, and 1% acetic acid alone, as well as the combinations of AO and organic acid, for washing the raw materials of saengsik (carrot, cabbage, glutinous rice, barley) with or without agitation. The combination of AO and 1% of each organic acid significantly inactivated spoilage bacteria in both the vegetables and the grains (p<0.05). However, in the glutinous rice, no inhibitory effects were shown for total aerobic bacteria by using water, ozone, or the combination of AO with citric acid or lactic acid, without agitation. Microbial inactivation was enhanced with agitation in the grains, whereas dipping (no agitation) treatments showed better inhibitory effects in the vegetables than in the barley, suggesting that washing processes should take into account the type of food material.

Characterization of Yeast and Bacterial Type Strains with Food and Agricultural Applications by MALDI-TOF Mass Spectrometry Biotyping

  • Harnpicharnchai, Piyanun;Jaresitthikunchai, Janthima;Seesang, Mintra;Jindamorakot, Sasitorn;Tanapongpipat, Sutipa;Ingsriswang, Supawadee
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.2
    • /
    • pp.138-147
    • /
    • 2020
  • Various microorganisms play important roles in food fermentation, food spoilage, and agriculture. In this study, the biotype of 54 yeast and bacterial strains having high potential for utilization in food and agriculture, including Candida spp., Lactobacillus spp., and Acetobacter spp., were characterized by matrix-assisted laser desorption/ionization time-of flight mass spectrometry (MALDI-TOF MS). This characterization using a fast and robust method provides much-needed information on the selected microorganisms and will facilitate effective usage of these strains in various applications. Importantly, the unique protein profile of each microbial species obtained from this study was used to create a database of fingerprints from these species. The database was validated using microbial strains of the same species by comparing the mass spectra with the created database through pattern matching. The created reference database provides crucial information and is useful for further utilization of a large number of valuable microorganisms relevant to food and agriculture.

Inhibitory Effect of Mugwort(Artemisia asiatica Nakai) on the Growth of Food Spoilage Microorganisms and Identification of Antimicrobial Compounds

  • Kim, Soon--Im;Park, Hye-Jin;Han, Young-Sil
    • Preventive Nutrition and Food Science
    • /
    • v.1 no.1
    • /
    • pp.59-63
    • /
    • 1996
  • The antimicrobial activity of mugwort(artemisia asiatica Nakai) was investigated. The methanol extract or dried mugwort was fractionated to hexane, chloroform, ethylacetate, butanol, and aqueous fractions. The hexane fraction among these fractions showed the hifhest inhibitory effect on the growth of microorganisms such as Bacillus subtilis, Escherichia coli, Staphylococcus aureus and Lactobacillus plantarum. Bacillus subtilis, Escherchia coli, and Staphylococcus aureus were completely inhibited at a concentration of 250, 500 , and 750$\mu\textrm{g}$/ml respectively. The hexane fraction was further fractionated into 16 subfractions by silica gel column and thin layer chromatography(TLC). The subfraction No. 8, 9, and 10 on TLC exhibited high antimicrnial activity. At 3rd fractionation, subfraction No. 2 inhibited the growth of microorganisms at 500$\mu\textrm{g}$/ml. Heptadecane, dodecamethyi cyclohexasiloxane, (E,E)-2,4-decadienal, dodecamethul pentasiloxane, coumarin, 5,6,6,6a-tetrahydro-4,4,7a-trimethyl-2(4H)-benzofuranone, neophytadiene, tridecanoic acid, methyl ester, 2-methyl-4,5-nonadiene, (Z,Z)-9-12-octadecadienoyl chloride, and bis(2-ethylhexyl) were identified from this antimicrobial fraction by GC-MS.

  • PDF

Biology and Health Aspects of Molds in Foods and the Environment

  • Bullerman, Lloyd-B.
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.3
    • /
    • pp.359-366
    • /
    • 1993
  • Molds are eucaryotic, multicellular, multinucleate, filamentous organisms that reproduce by forming asexual and sexual spores. The spores are readily spread through the air and because they are very light-weight and tend to behave like dust particles, they are easily disseminated on air currents. Molds therefore are ubiquitous organisms that are found everywhere, throughout the environment. The natural habitat of most molds is the soil where they grow on and break down decaying vegetable matter. Thus, where there is decaying organic matter in an area, there are often high numbers of mold spores in the atmosphere of the environment. Molds are common contaminants of plant materials, including grains and seeds, and therefore readily contaminate human foods and animal feeds. Molds can tolerate relatively harsh environments and adapt to more severe stresses than most microorganisms. They require less available moisture for growth than bacteria and yeasts and can grow on substrates containing concentrations of sugar or salt that bacteria can not tolerate. Most molds are highly aerobic, requiring oxygen for growth. Molds grow over a wide temperature range, but few can grow at extremely high temperatures. Molds have simple nutritional requirements, requiring primarily a source of carbon and simple organic nitrogen. Because of this, molds can grow on many foods and feed materials and cause spoilage and deterioration. Some molds ran produce toxic substances known as mycotoxins, which are toxic to humans and animals. Mold growth in foods can be controlled by manipulating factors such as atmosphere, moisture content, water activity, relative humidity and temperature. The presence of other microorganisms tends to restrict mold growth, especially if conditions are favorable for growth of bacteria or yeasts. Certain chemicals in the substrate may also inhibit mold growth. These may be naturally occurring or added for the purpose of preservation. Only a relatively few of the approximately 100,000 different species of fungi are involved in the deterioration of food and agricultural commodities and production of mycotoxins. Deteriorative and toxic mold species are found primarily in the genera Aspergillus, Penicillium, Fusarium, Alternaria, Trichothecium, Trichoderma, Rhizopus, Mucor and Cladosporium. While many molds can be observed as surface growth on foods, they also often occur as internal contaminants of nuts, seeds and grains. Mold deterioration of foods and agricultural commodities is a serious problem world-wide. However, molds also pose hazards to human and animal health in the form of mycotoxins, as infectious agents and as respiratory irritants and allergens. Thus, molds are involved in a number of human and animal diseases with serious implication for health.

  • PDF

Mathematical Simulation of the Temperature Dependence of Time Temperature Integrator (TTI) and Meat Qualities (육류의 품질과 Time Temperature Integrator(TTI) 온도의존성에 대한 수학적 Simulation)

  • Park, Han-Jo;Shim, Soo-Dong;Min, Sang-Gi;Lee, Seung-Ju
    • Food Science of Animal Resources
    • /
    • v.29 no.3
    • /
    • pp.349-355
    • /
    • 2009
  • The temperature dependence of time temperature integrator (TTI) was investigated in terms of the Arrhenius activation energy (Ea) to determine TTI requirements to accurately predict meat quality during storage. Mathematical simulation was conducted using a numerical analysis. First, using Euler's method and MS Excel VBA, the TTI color change was kinetically modeled and numerically calculated under several storage conditions. From the TTI color variable profiles calculated from the storage time-temperature profiles, $T_{eff}$, which is a constant temperature representing the whole temperature profiles, was calculated. Upon predicting Pseudomonas spp. concentrations (one of the meat qualities) from $T_{eff}$, it was found that if $Ea_{microbial\;spoilage}=Ea_{TTI}$ be true, then Pseudomonas concentrations were calculated to be constant with the same TTI color values, regardless of time-temperature profiles, whereas if $Ea_{microbial\;spoilage}{\neq}Ea_{TTI}$ then Pseudomonas concentrations varied even with the same TTI color values. This indicates that each TTI color value represents its own fixed degree of meat quality, only if $Ea_{meat\;qualities}=Ea_{TTI}$.

Environmental Challenges of Animal Agriculture and the Role and Task of Animal Nutrition in Environmental Protection - Review -

  • Chen, Daiwen
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.3
    • /
    • pp.423-431
    • /
    • 2001
  • Animals are one of the important memberships of the food chain. The low-efficiency rule of nutrient transfer from one member to the next in the food chain determines the low efficiency of animal agriculture for human food. On the average, about 20% feed proteins and 15% feed energy can be converted into edible nutrients for humans. The rest proportion of feed nutrients is exposed to the environment. Environmental pollution, therefore, is inevitable as animal agriculture grows intensively and extensively. The over-loading of the environment by nutrients such as nitrogen, phosphorus from animal manure results in soil and water spoilage. The emission of gases like $CH_2$, $CO_2$, $SO_2$, NO, $NO_2$ by animals are one of the contributors for the acidification of the environment and global warming. The inefficient utilization of natural resources and the probable unsafety of animal products to human health are also a critical environmental issue. Improving the conversion efficiency of nutrients in the food chain is the fundamental strategy for solving environmental issues. Specifically in animal agriculture, the strategy includes the improvements of animal genotypes, nutritional and feeding management, animal health, housing systems and waste disposal programs. Animal nutrition science plays a unique and irreplaceable role in the control of nutrient input and output in either products or wastes. Several nutritional methods are proved to be effective in alleviating environmental pollution. A lot of nutritional issues, however, remain to be further researched for the science of animal nutrition to be a strong helper for sustainability of animal agriculture.

Nonthermal Sterilization and Shelf-life Extension of Seafood Products by Intense Pulsed Light Treatment (수산물의 비열살균 및 저장성 향상에 대한 광펄스의 효과)

  • Cheigh, Chan-Ick;Mun, Ji-Hye;Chung, Myong-Soo
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.1
    • /
    • pp.69-76
    • /
    • 2012
  • Intense pulsed light(IPL) has been highlighted as an innovative nonthermal sterilization technology that can kill spoilage or pathogenic microorganisms by using short-duration pulses of intense broad-spectrum electromagnetic radiation. This paper examines the inactivation effects of IPL on Listeria monocytogenes, Escherichia coli O157:H7, and Pseudomonas aeruginosa inoculated on seafood products such as salmon, flatfish, and shrimps and evaluates the possibility of extending the shelf-life of seafood products. The results indicate that the inactivation of microorganisms increased with an increase in IPL energy density($J/cm^2$) and a decrease in the distance between the sample surface and the lamp. In addition, temperature increases on the fish fillets during the treatments were well controlled within the range of 5.7~$9.8^{\circ}C$. The IPL treatment had a significant positive effect on the storage stability of seafood products at the storage temperature of $4^{\circ}C$ for 12 days. These results suggest that the storage period for fish fillets can be extended from 4 days to 6~8 days through the IPL treatment.

Antimicrobial Effect of Pulsatilla Koreana Extracts on Food-Borne Pathogens (백두옹 추출물의 식중독성 미생물에 대한 항균효과)

  • 배지현
    • Journal of Nutrition and Health
    • /
    • v.37 no.8
    • /
    • pp.655-661
    • /
    • 2004
  • This study was performed to investigate the antimicrobial effect of the Pulsatilla koreana extracts against food-borne pathogens. First, the Pulsatilla koreana was extracted with methanol at room temperatures, and fractionation of the methanol extracts from Pulsatilla koreana was carried out by using petroleum ether, chloroform, and ethyl acetate, and methanol respectively. The antimicrobial activity of the Pulsatilla koreana extracts was determined using a paper disc method against food-borne pathogens and food spoilage bacteria. The ethyl acetate extracts of Pulsatilla koreana showed the highest antimicrobial activity against Staphylococcus aureus, Salmonella enteritidis and Shigella dysenteriae. The Staphylococcus aureus and Shigella dysenteriae were inhibited by petroleum ether and chloroform extracts of Pulsatilla koreana as well as ethyl acetate extracts of Pulsatilla koreana. The synergistic effect has been found in combined extracts of Pulsatilla koreana and Portulaca oleracea as compared to each extracts alone. Finally, the growth inhibition curve was determined using ethyl acetate extracts of Pulsatilla koreana against Staphylococcus aureus and Shigella dysenteriae. The ethyl acetate extract of Pulsatilla koreana showed strong antimicrobial activity against Staphylococcus aureus at the concentration of 2,000 ppm. The 2,000 ppm of ethyl acetate extract from Pulsatilla koreana retarded the growth of S. aureus more than 12 hours and Shigella dysenteriae up to 9 hours.