• Title/Summary/Keyword: following robot

Search Result 325, Processing Time 0.029 seconds

Real-Time System Design and Point-to-Point Path Tracking for Real-Time Mobile Robot

  • Wang, F.H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.162-167
    • /
    • 2003
  • In this paper, a novel feasible real-time system was researched for a differential driven wheeled autonomous mobile robot so that the mobile robot can move in a smooth, safe and elegant way. Least Square Minimum Path Planning was well used for the system to generate a smooth executable path for the mobile robot, and the point-to-point tracking algorithm was presented as well as its application in arbitrary path tracking. In order to make sure the robot can run elegantly and safely, trapezoidal speed was integrated into the point-to-point path tracking algorithm. The application to guest following for the autonomous mobile robot shows its wide application of the algorithm. The novel design was successfully proved to be feasible by our experiments on our mobile robot Interactive Robot Usher (IRU) in National University of Singapore.

  • PDF

Development of a Parallel Robot for Testing a Mobile Surveillance Robot Stabilization System (모바일 경계로봇의 안정화 시스템 테스트를 위한 병렬로봇의 개발)

  • Kim, Do-Hyun;Kwon, Jeong-Joo;Kim, Sung-Soo;Choi, Hee-Byoung;Park, Sung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.735-738
    • /
    • 2008
  • A 6 D.O.F Stewart platform type parallel robot has been developed as a simulator to test the surveillance robot stabilization control. Since the surveillance robot is installed on the unmanned ground vehicle (UGV), it is required to have a stabilization control system to compensate the disturbance from the UGV. PID control scheme has been applied to the parallel robot to generate controlled motion following the input motion.

  • PDF

Efficient Exploration for Room Finding Using Wall-Following based Path Planning (벽추종 경로계획 기반의 효과적인 방 찾기 탐사)

  • Park, Joong-Tae;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.12
    • /
    • pp.1232-1239
    • /
    • 2009
  • This paper proposes an exploration strategy to efficiently find a specific place in large unknown environments with wall-following based path planning. Many exploration methods proposed so far showed good performance but they focused only on efficient planning for modeling unknown environments. Therefore, to successfully accomplish the room finding task, two additional requirements should be considered. First, suitable path-planning is needed to recognize the room number. Most conventional exploration schemes used the gradient method to extract the optimal path. In these schemes, the paths are extracted in the middle of the free space which is usually far from the wall. If the robot follows such a path, it is not likely to recognize the room number written on the wall because room numbers are usually too small to be recognized by camera image from a distance. Second, the behavior which re-explores the explored area is needed. Even though the robot completes exploration, it is possible that some rooms are not registered in the constructed map for some reasons such as poor recognition performance, occlusion by a human and so on. With this scheme, the robot does not have to visit and model the whole environment. This proposed method is very simple but it guarantees that the robot can find a specific room in most cases. The proposed exploration strategy was verified by various experiments.

Human following of Indoor mobile service robots with a Laser Range Finder (단일레이저거리센서를 탑재한 실내용이동서비스로봇의 사람추종)

  • Yoo, Yoon-Kyu;Kim, Ho-Yeon;Chung, Woo-Jin;Park, Joo-Young
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.1
    • /
    • pp.86-96
    • /
    • 2011
  • The human-following is one of the significant procedure in human-friendly navigation of mobile robots. There are many approaches of human-following technology. Many approaches have adopted various multiple sensors such as vision system and Laser Range Finder (LRF). In this paper, we propose detection and tracking approaches for human legs by the use of a single LRF. We extract four simple attributes of human legs. To define the boundary of extracted attributes mathematically, we used a Support Vector Data Description (SVDD) scheme. We establish an efficient leg-tracking scheme by exploiting a human walking model to achieve robust tracking under occlusions. The proposed approaches were successfully verified through various experiments.

Formation Control Algorithm for Swarm Robots Using Virtual Force (가상의 힘을 이용한 군집 로봇의 대형 제어 알고리즘)

  • Tak, Myung Hwan;Joo, Young Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1428-1433
    • /
    • 2014
  • In this paper, we propose the formation control algorithm using the leader-following robots in given space. The proposed method is as follows: First, we plan a path of the leader robot for the obstacle avoidance. After that, we propose the formation control algorithm of the following robots using the position and the orientation angle of the leader robot. Also, we propose method for adjusting the formation of the swarm robots when the following robots detect an obstacles. Finally, we show the effectiveness and feasibility of the proposed method though some simulations.

Curb Detection and Following in Various Environments by Adjusting Tilt Angle of a Laser Scanner (레이저 스캐너의 틸트 각도 조절을 통한 다양한 환경에서의 연석 탐지 및 추종)

  • Lee, Dong-Wook;Lee, Yong-Ju;Song, Jae-Bok;Baek, Joo-Hyun;Ryu, Jae-Kwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.11
    • /
    • pp.1068-1073
    • /
    • 2010
  • When a robot navigates in an outdoor environment, a curb or a sidewalk separated from the road can be used as a robust feature. However, most algorithms could detect the curb only in the straight road, and could not detect highly curved corners, ramps, and so on. This paper proposes an algorithm which enables the robot to detect and follow the curbs in various types of roads. In the proposed method, the robot tilts a laser scanner and computes the error between the predicted and the measured distances to the road in front of the robot. Based on this error, the curbs at corners and curves can be classified. It is also difficult to detect a curb near a ramp because of its low height. In this case, the robot also tilts a laser scanner to detect the curb beyond the ramp. Once the robot classifies the road into the curve, corner, ramp, the robot selects the proper navigation strategies depending on the classified road types and is able to continue to detect and follow the curb. The results of a series of experiments show that the robot can stably detect and follows the curb in curves, corners and ramps as well as the straight road.

Patient-reported satisfaction after robot-assisted hysterectomy among Korean patients with benign uterine disease

  • Park, Suyeon;Lee, Young-eun;Cho, Seong-Sik;Park, Sung-ho;Park, Sung Taek
    • Obstetrics & gynecology science
    • /
    • v.61 no.6
    • /
    • pp.675-683
    • /
    • 2018
  • Objective This study aimed to evaluate patient-reported satisfaction following robot-assisted hysterectomy due to benign uterine disease, and to identify the factors associated. Methods We used a questionnaire to evaluate patients' satisfaction with robot-assisted hysterectomy. The questions concerned overall patient-reported satisfaction and specific factors affecting satisfaction, including postoperative pain, return to daily life, the hospital experience, wounds, cost, the doctor-patient relationship, whether expectations were met, and whether detailed information was provided. We also collected data from patient records, such as uterine weight, rate of pelvic adhesion, operation time, rate of transfusion, delayed discharge, and readmission. One hundred patients who underwent robot-assisted hysterectomy participated in the study. Seventy-three fully completed questionnaires were returned. Results The majority of patients (95.9%) were satisfied with robot-assisted hysterectomy. The doctor-patient relationship, whether expectations were met, the hospital experience, wounds, and whether detailed information was provided were statistically significant factors influencing patients' overall satisfaction. Payment of fees and clinical and surgical outcomes did not significantly influence patients' overall satisfaction. Conclusion Our findings show that most patients reported high levels of satisfaction following robot-assisted hysterectomy, regardless of cost or clinical and surgical outcomes. Therefore, if gynecologists consider robot-assisted hysterectomy suitable for patients they need not hesitate based on potential costs; they should feel confident in recommending the procedure to patients.

Fuzzy Inference Based Collision Free Navigation of a Mobile Robot using Sensor Fusion (퍼지추론기반 센서융합 이동로봇의 장애물 회피 주행기법)

  • Jin, Taeseok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.2
    • /
    • pp.95-101
    • /
    • 2018
  • This paper presents a collision free mobile robot navigation based on the fuzzy inference fusion model in unkonown environments using multi-ultrasonic sensor. Six ultrasonic sensors are used for the collision avoidance approach where CCD camera sensors is used for the trajectory following approach. The fuzzy system is composed of three inputs which are the six distance sensors and the camera, two outputs which are the left and right velocities of the mobile robot's wheels, and three cost functions for the robot's movement, direction, obstacle avoidance, and rotation. For the evaluation of the proposed algorithm, we performed real experiments with mobile robot with ultrasonic sensors. The results show that the proposed algorithm is apt to identify obstacles in unknown environments to guide the robot to the goal location safely.

Control Strategy for Obstacle Avoidance of an Agricultural Robot (농용 로봇의 장애물 회피알고리즘)

  • 류관희;김기영;박정인;류영선
    • Journal of Biosystems Engineering
    • /
    • v.25 no.2
    • /
    • pp.141-150
    • /
    • 2000
  • This study was carried out to de develop a control strategy of a fruit harvesting redundant robot. The method of generating a safe trajectory, which avoids collisions with obstracles such as branches or immature fruits, in the 3D(3-dimension) space using artificial potential field technique and virtual plane concept was proposed. Also, the method of setting reference velocity vectors to follow the trajectory and to avoid obstacles in the 3D space was proposed. Developed methods were verified with computer simulations and with actual robot tests. Fro the actual robot tests, a machine vision system was used for detecting fruits and obstacles, Results showed that developed control method could reduce the occurrences of the robot manipulator located in the possible collision distance. with 10 virtual obstacles generated randomly in the 3 D space, maximum rates of the occurrences of the robot manipulator located in the possible collision distance, 0.03 m, from the obstacles were 8 % with 5 degree of freedom (DOF), 8 % with 6-DOF, and 4% with 7-DOF, respectively.

  • PDF

Development of Human Following Method of Mobile Robot Using TRT Pose (TRT Pose를 이용한 모바일 로봇의 사람 추종 기법)

  • Choi, Jun-Hyeon;Joo, Kyeong-Jin;Yun, Sang-Seok;Kim, Jong-Wook
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.6
    • /
    • pp.281-287
    • /
    • 2020
  • In this paper, we propose a method for estimating a walking direction by which a mobile robots follows a person using TRT (Tensor RT) pose, which is motion recognition based on deep learning. Mobile robots can measure individual movements by recognizing key points on the person's pelvis and determine the direction in which the person tries to move. Using these information and the distance between robot and human, the mobile robot can follow the person stably keeping a safe distance from people. The TRT Pose only extracts key point information to prevent privacy issues while a camera in the mobile robot records video. To validate the proposed technology, experiment is carried out successfully where human walks away or toward the mobile robot in zigzag form and the robot continuously follows human with prescribed distance.