• Title/Summary/Keyword: foliar application activity

Search Result 63, Processing Time 0.029 seconds

Control of Sulfonylurea Herbicide-Resistant Lindernia dubia in Korean Rice Culture

  • Kuk, Yong-In
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.4
    • /
    • pp.328-334
    • /
    • 2002
  • A Lindernia dubia (L.) Pennell var. dubia accession from Jeonnam province, Korea was tested for resistance to sulfonylurea (SU) herbicides, imazosulfuron and pyrazosulfuron-ethyl in whole-plant response bioassay. The accession was confirmed resistant to both herbicides. The $GR_{50}$ (herbicide concentration that reduced shoot dry weight by 50%) values of resistant accession were 264 and 19 times higher to imazosulfuron and pyrazosulfuronethyl, respectively, than that of the standard susceptible accession. The surviving resistant L. dubia after pyrazosulfuron-ethyl + molinate application can be controlled by sequential applications of soil-applied herbicides, butachlor, dithiopyr, pyrazolate, and thiobencarb and foliar herbicides, bentazon. Sulfonylurea-based mixtures such as mixtures of azimsulfuron + anilofos, bensulfuron-methyl + oxadiazon, pyrazosulfuron-ethyl + fentrazamide, and pyrazosulfuron-ethyl + anilofos + carfentrazon can also be used to control the surviving resistant L. dubia. However, use of these mixtures should be restricted to a special need basis. Thus, we suggest that sequential applications of non-SU-based mixtures such as butachlor + pyrazolate and MCPB + molinate + simetryne be used to control the surviving resistant L. dubia after SU herbicide applications. Rice yield was reduced 24 % by resistant L. dubia that survived after the pyrazosulfuron-ethyl + molinate application compared with pyrazolate + butachlor in transplanted rice culture. In vitro ALS activity of the resistant biotype was 40 and 30 times more resistant to imazosulfuron and pyrazosulfuron-ethyl, respectively, than the susceptible biotype. Result of in vitro ALS assay that the resistance mechanism of L. dubia to SU herbicides may be due, in part, to an alteration in the target enzyme, ALS.

Control effect of isobutyric acid on rice blast (벼 도열병에 대한 indole butyric acid(IBA)의 방제 효과)

  • Kim, Heung-Tae;Hong, Kyeong-Sik;Choi, Gyung-Ja;Jang, Kyung-Soo;Ryu, Choong-Min
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.4
    • /
    • pp.313-319
    • /
    • 2007
  • Nine plant growth regulators (PGRs) were tested for in vivo antifungal activities against on rice blast. They showed higher in vivo antifungal activities when they were applied on rice plants by soil drench rather than foliar spray. Except for 2,4-D at $500\;{\mu}g\;mL^{-1}$, the others showed a very low or no activity against the disease in foliar spray applications. In contrast, 2,4-D, indole butyric acid (IBA) and triiodobenzoic acid, at $500\;{\mu}g\;mL^{-1}$, showed control values of 98.9, 97.8 and 88.9% in soil drench applications. Furthermore, the control activity of IBA was dependent on its concentration against rice blast; IBA suppressed the development of rice blast by 71.7% at $125\;{\mu}g\;mL^{-1}$ and 85.8% at $250\;{\mu}g\;mL^{-1}$. IBA also controlled the development of rice blast on adult plants by 63.9% at a dosage of 2.56 kg/10a. The results revealed that IBA has a good activity against rice blast when it is applied by soil drench.

Herbicidal and Insecticidal Potentials of 5-Aminolevulinic acid, a Biodegradable Substance (생분해성 생리활성물질 5-aminolevulinic acid의 제초 및 살충활성)

  • Chon, Sang-Uk
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.1
    • /
    • pp.52-58
    • /
    • 2007
  • ALA (5-aminolevulinic acid) has been proposed as a tetrapyrrole-dependent photodynamic herbicide and insecticide by the action of the protoporphyrinogen IX oxidase (Protox IX). The present study was conducted to determine growth responses of plant and insects to ALA, biodegradable biopesticidal substance. In the paddy condition experiment, plant height and shoot fresh weight of barnyardgrass (Echinochloa crus-galli) was more reduced by ALA than rice plants, even though both plant species show great phytotoxicity. Hairy crabgrass (Digitaria sanguinalis), a monocot weed, was more sensitive to ALA at 5mM under upland condition when ALA applied on the foliage, compared with soybean (Glycine max) as a dicot crop. ALA solutions were tested for their insecticidal and larvicidal activities against Spodaptera exigua (Hubner) and Tetranychus urticae Koch. by foliar application and leaf-dipping method. The result showed higher insecticidal activity of ALA at 10mM and its mixture with insecticide luferon against S. exigua. Strongest insecticidal activity against T. urticae was observed from the ALA solution at 10mM 72 days after application. This results show that ALA solution had potent herbicidal and insecticidal activities against agricultural pests even though their activities were lower than those of synthetic pesticides.

Biocontrol Efficacy of Formulated Pseudomonas chlororaphis O6 against Plant Diseases and Root-Knot Nematodes

  • Nam, Hyo Song;Anderson, Anne J.;Kim, Young Cheol
    • The Plant Pathology Journal
    • /
    • v.34 no.3
    • /
    • pp.241-249
    • /
    • 2018
  • Commercial biocontrol of microbial plant diseases and plant pests, such as nematodes, requires field-effective formulations. The isolate Pseudomonas chlororaphis O6 is a Gram-negative bacterium that controls microbial plant pathogens both directly and indirectly. This bacterium also has nematocidal activity. In this study, we report on the efficacy of a wettable powder-type formulation of P. chlororaphis O6. Culturable bacteria in the formulated product were retained at above $1{\times}10^8$ colony forming units/g after storage of the powder at $25^{\circ}C$ for six months. Foliar application of the diluted formulated product controlled leaf blight and gray mold in tomato. The product also displayed preventative and curative controls for root-knot nematode (Meloidogyne spp.) in tomato. Under laboratory conditions and for commercially grown melon, the control was at levels comparable to that of a standard commercial chemical nematicide. The results indicated that the wettable powder formulation product of P. chlororaphis O6 can be used for control of plant microbial pathogens and root-knot nematodes.

Herbicidal Activity of Essential Oil from Amyris (Amyris balsamifera) (아미리스 정유의 제초활성)

  • Yun, Mi Sun;Yeon, Bo-Ram;Cho, Hae Me;Choi, Jung Sup;Kim, Songmun
    • Weed & Turfgrass Science
    • /
    • v.1 no.4
    • /
    • pp.44-49
    • /
    • 2012
  • The objective of this study was to know the herbicidal activity of the essential oil from amyris (Amyris balsamifera). In a seed bioassay experiment, the amyris essential oil inhibited the growth of rapeseed (Brassica napus) by fifty percent at 8.8 ${\mu}g\;g^{-1}$. And in a greenhouse experiment, sorghum, barnyard grass and Indian jointvetch, which was applied in above-ground parts, with the amyris essential oil at 4,000 ${\mu}g\;ml^{-1}$ showed visual injuries of 90, 70, and 70, respectively (0, no damage; 100, total damage). However, soil application of the essential oil did not show such herbicidal injuries. In a field experiment, foliar application of the amyris essential oil at 5% controlled effectively weeds such as barnyardgrass, shepherd's purse, and clover in 24 hours. Our results indicated that the amyris essential oil had herbicidal activity. To understand the composition of the amyris essential oil, the oil was analyzed by gas chromatography-mass spectometry with solid-phase micro-extraction apparatus. There were 15 organic chemicals in the oil and the major constituents were calarene, elemol, ${\gamma}$-eudesmol, curcumene, ${\beta}$-sesquiphellandrene, zingiberene, selina-3,7(11)-diene, 1,3-diisopropenyl-6-methyl-cyclohexene, ${\beta}$-bisabolene, and ${\beta}$-maaliene. Overall results suggest that the amyris essential oil had a herbicidal activity with fast, contact, and non-selective mechanism.

Application of Chitosan Preparations for Eco-friendly Control of Potato Late Blight (감자 역병의 친환경 방제를 위한 키토산 제형의 살포)

  • Chang, Taehyun;Kim, Byung Sup
    • Research in Plant Disease
    • /
    • v.18 no.4
    • /
    • pp.338-348
    • /
    • 2012
  • Potato late blight caused by Phytophthora infestans Cooke is one of the major diseases in the cultivation of potatoes in Korea. Effect of chitosan preparations (SH-1 and SH-2) was evaluated on the inhibition of mycelial growth of P. infestans, and protective activity using detached potato leaf assay both in vivo and in the field test. SH-1 and SH-2 were showed protective activity of young plant with control values more than 95% potato late blight by inoculation with pathogens under growth chamber conditions. Mycelial growth was inhibited the radial growth over 74% at a concentration of $300{\mu}g/ml$ of both SH-1 and SH-2. Spraying with SH-1 and SH-2 on the leaves for detached leaf assay reduced disease development. The content of total polyphenol in stem was significantly increased by SH-1 and SH-2 application in the field. In field experiments, foliar application with both SH-1 and SH-2 were significantly reduced the development of late blight on potato plants. Control of late blight disease was obtained with control values of 72% and 53% by application of 1% SH-1 and SH-2, respectively, with 4 times at 7 days interval, and reduced with similar disease control values by application with 3 times at 14 days interval compared with untreated control. SH-1 and SH-2 applications increased the fresh weight of potato, and higher grade potatoes were also increased. The results showed that SH-1 and SH-2 applications can be used as eco-friendly natural fungicide for organic farming for the increase of yields and control of late blight.

Effect of Herbicide Application on Weed Control and Forage Production in Alpine Grassland Predominated with Red Sorrel(Rumex acetosella L.) (애기수영이 우점한 고랭지 목초지에 제초제의 처리가 잡초방제 및 목초생육에 미치는 영향)

  • Kim, Y.K.;Chung, C.W.;Choi, Y.S.;Lim, Y.C.;Han , S.Y.;Na, K.J.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.865-874
    • /
    • 2003
  • Red sorrel, as one of exotic weeds in Korea, was introduced along with imported cereals for concentrate feed or within the seed for forage production. The plant was dominated in grassland and reduced the quality of forage. In particular, this weed cause severe problem in alpine grassland. This study was carried out to investigate the effect and response of red sorrel and forage crops by foliar and soil applied herbicide application. Mecoprop(MCPP) and pendimethaline were selected by pre-field experiment trials and applied to control the red sorrel in grassland. Herbicidal activity of MCPP was 77.2% at 500$m\ell$/10a level and 82.8% at 750$m\ell$/10a level. However, seeds of red sorrel from bare land formed after foliar applied herbicide treatment were germinated and covered bare land. Pendimethalin was not reduced the rhizome growth grown from red sorrel root but retarded seedling growth of germinated red sorrel. The herbicidal activity of pendimethalin to the red sorrel seedling was 83.0%. 2 times application of MCPP at the rate of 750$m\ell$/10a was effective to control of red sorrel regrown from root and herbicidal activity was 93.2%. MCPP and pendimethaline treatment was not reduced growth of grass and have no herbicidal injury to forage crop seedling. Amount of MCPP and pendimethalin remained in grass plant was decreased from 20 days after herbicide treatment and could not be problem in livestock feeding.

Synthesis and Herbicidal Activities of Hydantoin Derivatives Possessing Amide Subgroup (아미드 치환체를 갖는 히단토인계 화합물의 합성과 제초활성 연구)

  • Ko, Young-Kwan;Chung, Keun-Hoe;Ryu, Jae-Wook;Woo, Jae-Chun;Koo, Dong-Wan;Choi, Jung-Sub;Kim, Jun-Young;Kim, Tae-Joon;Kwon, Oh-Yeon;Chung, Bong-Jin;Kim, Dae-Whang
    • The Korean Journal of Pesticide Science
    • /
    • v.10 no.2
    • /
    • pp.153-156
    • /
    • 2006
  • As an ongoing research program for the development of environmentally friendly new herbicide, several hydantoin derivatives 5a - 5i possessing amide subgroup were synthesized and shown to have interesting herbicidal activities exhibiting symptoms as Protoporphyrinogen IX oxidase inhibitor under postemergence upland greenhouse screening. Among derivatives tested, compound 5h showed superior herbicidal activity against upland problem weed, digitaria sanguinalis and aeschynomene indica to reference compound fluthiacet-methyl.

Effect of Sodium Methyl Arsenate as a Male Gametocide on Rice (Oryza sativa L.) (수도 웅성불임제로서 Sodium Methyl Arsenate의 효과)

  • Cho, Soo-Yeon;Son, Young-Hee;Choi, Hae-Chun;Moon, Huhn-Pal;Park, Rae-Kyeong;Park, Nam-Kyu;Kim, Chong-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.1
    • /
    • pp.55-59
    • /
    • 1989
  • Sodium methyl arsenate has been evaluated as a male sterilizing agent for the system of producing hybrid rice seeds. The compound was the most effective at the concentration of 0.02%. When applied as a foliar spray to four rice varieties at 15 days before heading, sodium methyl arsenate has produced 99% male sterility. But the most effective time for application of the compound was 5 days before heading because of its phytotoxic effects. Effective application volume of the compound solution has depended on the growth of the plants treated. Varietal difference on the activity of the compound has been detected.

  • PDF

Effect of Bentazon 6-hydroxylase Activity on Tolerance of Corn Cultivars to Bentazon (Bentazon 분해효소(分解酵素) 활성(活性)이 옥수수 품종간(品種間) Bentazon 내성(耐性)에 미치는 영향(影響))

  • Yun, Min-Soo;Pyon, Jong-Yeong
    • Korean Journal of Weed Science
    • /
    • v.15 no.3
    • /
    • pp.214-223
    • /
    • 1995
  • Tolerant corn cultivars to bentazon were selected and tolerance mechanism of corn cultivars to bentazon was studied by determining bentazon 6-hydroxylase(B6H) activity which was known to detoxify bentazon to 6-hydroxy bentazon at induced enzyme conditions with treatments of 1,8-naphthalic anhydride, ethanol and phenobarbital. Tolerant cultivars to bentazon were selected by growth response of corn by foliar application of bentazon to corn cultivars. Kwanganok, GA 209, IK 2, DB 544, and Suwon 19 were tolerant to bentazon, but KSS 3, KSS 4, KS 5, and Danok 2 were susceptible. Pretreating corn seeds with 1,8-naphthalic anhydride increased B6H activity at all cultivars, but the tendencies were more remarkable at Suwon 19 and GA 209, tolerant cultivars, than at Danok 2 and KS 5, susceptible cultivars. Treating corn shoots with ethanol increased B6H activity at Suwon 19 and GA 209. B6H activity was enhanced by treatments of ethanol at 1.0 or 2.5%, but decreased at ethanol 2.5 or 5.0% at Danok 2 and KS 5. Treating corn shoots with phenobarbital increased B6H activity at Suwon 19, GA 209, Danok 2, and KS 5 by treatments of phenobarbital at 2.0mM, but decreased at 4.0 or 8.0mM at all cultivars. Therefore, the tolerant mechanism of corn cultivars to bentazon may be explained partially by the activity of bentazon 6-hydroxylase which detoxifies bentazon to 6-hydroxy bentazon.

  • PDF