• Title/Summary/Keyword: foldability

Search Result 2, Processing Time 0.017 seconds

Studies on the Foldability of Coated Board(II) - Influence of operating conditions in creasing and folding process on the foldability of duplex board - (백판지의 제함적성에 관한 연구(제2보) - 괘선/구부림 가공 작업조건이 제함적성에 미치는 영향 -)

  • Lee, Yong-Kyu;Lim, Won-Seok;Kim, Chang-Keun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.4
    • /
    • pp.66-73
    • /
    • 2008
  • When coated paperboard is printed, pressed into a groove with a creasing rule and folded, white line cracking occurs along the crease due to intensive mechanical pressure. The cracking will deteriorates product quality and waste resources. Effects of creasing pressure and ink dosage on the foldability of coated board were investigated. It was shown that applying an optimum pressure is important during creasing. When the pressure was too low, the crease formed was not sufficiently deep enough to enable precise folding. When an excess pressure was applied, fiber bonding was destroyed, resulted in unsatisfactory cracking. When the coated board was folded in machine direction (MD), long cracks were formed along MD. When it folded in cross direction (CD), the cracks were shorter and formed perpendicular to CD. Printing promoted cracking due to the decrease in flexibility of coated board. In addition, uneven ink film layer on the coating layer caused worse cracking.

Metal Grids Embedded Transparent Conductive Electrode with Flexibility and Its Applications

  • Jung, Sunghoon;Lee, Seunghun;Kim, Jong-Kuk;Kang, Jae-Wook;Kim, Do-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.314-314
    • /
    • 2013
  • Recently, flexibility is one of the hottest issues in the field of electronic devices. For flexible displays or solar cells, a development of transparent conductive electrodes (TCEs) with flexibility, bendability and foldability is an essential element. Hundreds of nanometers indium-tin-oxide (ITO) films have been widely used and commercialized as a transparent electrode, but their brittleness make them difficulty to apply flexible electronics. Many researchers have been studying for flexible TCEs such as a few layers of graphene sheets, carbon nanotube networks, conductive polymer films and combinations among them. Although gained flexibility, their transmittance and resistivity have not reached those of commercialized ITO films. Metal grids electrode cannot act as TCEs only, but they can be used to lower the resistance of TCEs with few losses of transmittance. However, the possibility of device shortage will be rise at the devices with metal grids because a surface flatness of TCEs may be deteriorated when metal grids are introduced using conventional methods. In our research, we have developed hybrid TCEs, which combined tens of nanometers ITO film and metal grids which are embedded in flexible substrate. They show $13{\Omega}$/${\Box}f$ sheet resistance with 94% of transmittance. Moreover, the sheet resistance was maintained up to 1 mm of bending radius. Also, we have verified that flexible organic light emitting diodes and organic solar cells with the TCEs showed similar performances compared to commercial ITO (on glass substrate) devices.

  • PDF