• 제목/요약/키워드: fold axis

Search Result 68, Processing Time 0.021 seconds

Various Measurement Methods for Fold-axis from Fold-related Structural Elements: An Example from Danyang, Chungcheongbuk-do (습곡관련 구조요소들을 이용한 다양한 습곡축 측정방법의 실제적 적용성과 문제점: 충북 단양지역에서의 예)

  • Choi, Ho-Seok;Kim, Young-Seog
    • Journal of the Korean earth science society
    • /
    • v.42 no.2
    • /
    • pp.175-184
    • /
    • 2021
  • Fold axis of fold, a representative ductile deformation structure, is important for collecting information on the 3D fold structure and the orientation of maximum horizontal principal stress at the time of deformation. For this reason, several fold axis measurement methods based on the fold-related structural elements have been suggested and used even in areas where it is impossible to measure it directly. Thus, these various measurement methods are briefly introduced here, and the measured data with different methods are compared to estimate these methods' reliability. For this purpose, we acquired fold axes at six sites across the Manhang formation of the Pyeongan supergroup and limestones of the Joseon supergroup in Danyang, Chungcheongbuk-do, where fold structures are well developed. The data from the different methods are generally consistent, indicating practical applicability. Most of the fold axes from the measured sites show NNNE or NE trends indicating WNW-ESE or NW-SE trending maximum horizontal principal stress, except for the one site with a WNW trend. The WNW-ESE trending fold axis might be related to a different orogeny or secondary folding. The minor difference in the trends between N-NNE and NE was interpreted as being due to different scale; however, further research is needed to confirm this.

Precipitation of Icosahedral Qusicrystal Phase in Mg-Zn-Y(ZW61) alloy (Mg-Zn-Y(ZW61) 합금에서 Icosahedral 준결정상의 석출)

  • Kwak, Ho-Yeon;Lee, Kap-Ho
    • Korean Journal of Materials Research
    • /
    • v.21 no.3
    • /
    • pp.168-173
    • /
    • 2011
  • Precipitation of the ordered icosahedral quasicrystal in Mg-6wt%Zn-1wt%Y alloy has been characterized by transmission electron microscopy observations. The lamellar-type icosahedral qusicrystal phases (I-phase) with the face-centered icosahedral (FCI) structure are observed in alloy after solution treatment at $550^{\circ}C$. In the alloy annealed at $400^{\circ}C$, polygon-shaped I-phases are observed in the ${\alpha}$-Mg matrix. The interfaces of the I-phase with the matrix are facetted and the facets are on five-fold and two- fold plane of the I-phase. The orientation relationship of the I-phase with the matrix is determined to be $[I5]_I//[001]_{Mg}$, $(2f)_I//(2\overline{1}0)_{Mg}$ and $[I2]_I//[311]_{Mg}$, $(5f)_I//(0\overline{1}1)_{Mg}$. The icosahedral grains are occasionally found to be twinned with one of the five-fold axis as the twin axis. The twin boundaries appear to be fairly straight and perpendicular to the fivefold twin axis. The icosahedral twin can be expressed as a rotation of $63.4^{\circ}$ or $116.62^{\circ}$ around two fold zone axis.

IGRINS Mirror Mount Design for Three Off-Axis Collimators and One Slit-Viewer Fold Mirror

  • Rukdee, Surangkhana;Park, Chan;Kim, Kang-Min;Lee, Sung-Ho;Chun, Moo-Young;Yuk, In-Soo;Oh, Hee-Young;Jung, Hwa-Kyoung;Lee, Chung-Uk;Lee, Han-Shin;Rafal, Marc D.;Barnes, Stuart;Jaffe, Daniel T.
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.2
    • /
    • pp.233-244
    • /
    • 2012
  • The Korea Astronomy and Space Science Institute and the Department of Astronomy at the University of Texas at Austin are developing a near infrared wide-band high resolution spectrograph, immersion grating infrared spectrometer (IGRINS). The compact white-pupil design of the instrument optics uses seven cryogenic mirrors, including three aspherical off-axis collimators and four flat fold mirrors. In this study, we introduce the optomechanical mount designs of three off-axis collimating mirrors and one flat slit-viewer fold mirror. Two of the off-axis collimators are serving as H and K-band pupil transfer mirrors, and are designed as system alignment compensators in combination with the H2RG focal plane array detectors in each channel. For this reason, the mount designs include tip-tilt and parallel translation adjustment mechanisms to properly perform the precision alignment function. This means that the off-axis mirrors' optomechanical mount designs are among the most sensitive tasks in all IGRINS system hardware. The other flat fold mirror is designed within its very limitedly allowed work space. This slit-viewer fold mirror is mounted with its own version of the six-point kinematic optics mount. The design work consists of a computer-aided 3D modeling and finite element analysis (FEA) technique to optimize the structural stability and the thermal behavior of the mount models. From the structural and thermal FEA studies, we conclude that the four IGRINS mirror mounts are well designed to meet all optical stability tolerances and system thermal requirements.

Structural Properties of KLN Thin Film Deposited on Pt Coated Si Substrate (Pt 코팅된 Si 기판에 제조한 KLN 박막의 구조적 특성)

  • 박성근;이기직;백민수;전병억;김진수;남기홍
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.5
    • /
    • pp.410-416
    • /
    • 2001
  • KLN thin films were fabricated on Pt coated Si(100) wafer using an rf-magnetron sputtering method. The grown KLN thin film consists of 4-fold grains. In this experiment, the structure of 4-fold grained thin film was investigated using XRD and SEM measurements. Pt layer was also deposited using the rf-magnetron sputtering method,. XRD measurement showed that he Pt thin film has Gaussian distribution form with strong (111) direction orientation. The KLN thin film has preferred-orientation of (001) direction, and the peak consists of 2 separate peaks; one with broad FWHM and the other with narrow FWHM. The sharp peak is due to single crystal, and combining with Em results, the 4-fold grain consists of singel crystals with c-axis normal to substrate.

  • PDF

A Study on the Tower type Fizeau Interferometer System with a Fold Minor for Measuring Large Optical Lens Profile (반사경 측정을 위한 타워 방식의 Fold Mirror를 이용한 Fizeau 간섭계 시스템 구성)

  • Lee, Eung-Suk;Lee, Ki-Am;Kim, Ok-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.8
    • /
    • pp.21-28
    • /
    • 2008
  • Fizeau interferometer is used for inspecting the lens surface profile accurately. This study is focused on the design and optical measuring techniques for large optical components, such as a reflection mirror for large area lithography or astronomical purpose. A tower type Fizeau interferometer is designed and set up in horizontally with a 45$^{\circ}$ fold mirror which makes easy to align the optical path of heavy interferometer system. To align the optical path, a five-axes stage for the interferometer is required. This study shows a method of the 45$^{\circ}$ fold mirror alignment by using a three-axis stage instead of adjusting the interferometer itself or measuring object. This system will be installed on the large optics polishing machine during the manufacturing process as an on-machine inspection system.

Variations of Ferroelectric Properties by Unit Cell Distortion of Pb(Zr, Ti)O3-Pb(Co, Nb)O3 Solid Solution in Morphotropic Phase Boundary (Morphotropic Phase Boundary 영역의 Pb(Zr, Ti)O3-Pb(Co, Nb)O3계 고용체의 격자변형에 따른 강유전 특성 변화)

  • 이전국;정형진
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.6
    • /
    • pp.694-698
    • /
    • 1988
  • Pb(Zr, Ti)O3-Pb(Co, Nb)O3 systems were investigated by x-ray diffraction method. System contains rhombohedral, tetragonal, and pseudocubic structures at room temperature. Crystal symmetry was changed from 4-fold symmetry to 3-fold symmetry by substituting Pb(Co1/3, Nb2/3)O3 ; PCN, to Pb(Zr0.52, Ti0.48)O3 ; PZT. As the substituted PCN concentration was increased, an increase in a-axis direction and a decrease in c-axis in the perovskite structure were occurred simultaneously, so that the crystal symmetry was changed into such way. In the higher sinteringtemperatures, the unit cell distortions occurred rather in the lower substitution range of PCN. The ferroelectric properties were maximized at the region that tetragonal and rhombohedral or pseudocubic structures were coexist.

  • PDF

The Crytal and Molecular Structure of Morpholinothiosemicarbazide (Morpholinothiosemicarbazide의 結晶 및 分子構造)

  • Chung Hoe Koo;Hoon Sup Kim;Hyun So Shin;Yungja Lee
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.2
    • /
    • pp.105-114
    • /
    • 1973
  • The crystal structure of morpholinothiosemicarbazide has been determined by single crystal X-ray analysis. The lattice constants are a = 4.19(2), b = 6.56(2) and c = 26.67(4)${\AA}$. The unit cell contains 4 molecules and the space group is$P2_12_12_1$. The atomic parameters have been refined by least-squares method to a final R value of 0.07, based on the 651 observed reflexions. The amino nitrogen atom forms hydrogen bonds to the sulfur atoms of the other molecules related by the two-fold screw axis parallel to the a-axis, the distances of the hydrogen bonds being 3.48 and 3.49${\AA}$. On the other hand, the imino nitrogen atom forms a hydrogen bond to the amino nitrogen atom of the other molecule related by the two-fold screw axis parallel to the a-axis, the distance of the hydrogen bond being 3.04${\AA}$. These three hydrogen bonds arrange the molecules around the two-fold screw axis. Apart from the hydrogen bonding system the structure is held together by van der Waals forces.

  • PDF

Geological Structure of Precambrian to Paleozoic metasedimentary rocks in the Janggunbng area, Korea -Crustal evolution and environmental geology of the central part of the North Sobaegsan Massif, Korea- (장군봉지역 선캠브리아대-고생대 변성퇴적암류의 지질구조 -북부 소백산육괴의 중앙부지역의 지각진화와 환경지질)

  • Gang, Ji Hun;Kim, Hyeong Sik;O, Se Bong
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.244-244
    • /
    • 1997
  • The Janggunbong area(this study area) at the central-south part in the North Sobaegsan Massif, Korea, consists mainly of Precambrian(Wonnam and Yulri Formations)-Paleozoic [Joseon Supergroup(Jangsan Quarzite, Dueumri Formation and Janggum Limestone) and Pyeongan Group(Jaesan and Dongsugok Formations)] metasedimentary rocks and Mesozoic granitoid(Chunyang granite.) This study is to interpret geological structure of the North Sobaegsan Massif in the Jang-gunbong area by analysing rock-structure and microstructure of the constituent rocks. It indicates that its geological structure was formed at least by four phases of deformation after the formation of gneissosity(S0) in the Wonnam Formation and bedding plane(S0) in the Paleozoic metasedimentary rocks. The first phase deformation(D1) formed tight isoclinal fold(F1). Its axial plane(S1) strikes east-west and steeply dips north. Its axis (L1) subhorizontally plunges east-west. The second phase deformation(D2), which was related to ductile shear deformation, formed stretching lineation(L2) and shear foliation(S2). The sense of the shear movement indicates dextral strike-slip shearing(top-to-the east shearing). The third phase deformation(D3) formed open inclined fold(F3). Its axial plane(S3) strikes east-west and moderately or gently dips north. Its axis(L3) subhorizontally plunges east-west. The F3 fold reoriented the original north-dipping S1 foliation and D2 shear sense into south-dipping S1 foliation(top-to-the west shear sense on this foliation) at its a limb. The four phase of deformation(D4) formed asymmetric-type open inclined fold(F4) of NE-vergence with NW striking axial plane(S4) and NW-NNW plunging axis(L4). The F4 fold partly reoriented pre-D4 structural elements with east-west trend into those with north-south trend. Such reorientation is recognized mainly in the Paleozoic metasedimentary rocks.

Geological Structure of Precambrian to Paleozoic metasedimentary rocks in the Janggunbong area, Korea-Crustal evolution and environmental geology of the central part of the North Sobaegsan massif, Korea- (장군봉지역 선캠브리아대-고생대 변성퇴적암류의 지질구조-북부 소백산육괴의 중앙부지역의 지각진화와 환경지질)

  • 강지훈;김형식;오세봉
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.224-259
    • /
    • 1997
  • The Janggunbong area(this study area) at the central-south part in the North Sobaegsan Massif, Korea, consists mainly of Precambrian(Wonnam and Yulri Formations)-Paleozoic [Joseon Supergroupuangsan Quarzite, Dueumri Formation and Janggun Limestone) and Pyeongan Group (Jaesan and Dongsugok Formations)l metasedimentary rocks and Mesozoic granitoid(Chunyang granite). This study is to interpret geological structure of the North Sobaegsan Massif in the Janggunbong area by analysing rock-structure and microstructure of the constituent rocks. It indicates that its geological structure was formed at least by four phases of deformation after the formation of gneissosity(S0) in the Wonnam Formation and bedding plane(S0) in the Paleozoic metasedimentary rocks. The first phase deformation(D1) formed tight isoclinal fold(F1). Its axial plane(S1) strikes east-west and steeply dips north. Its axis(L1) subhorizontally plunges east-west. The second phase deformation(D2), which was related to ductile shear deformation, formed stretching lineation(L2) and shear foliation(S2). The sense of the shear movement indicates dextral strike-slip shearing(topto-the east shearing). The third phase deformation(D3) formed open inclined fold(F3). Its axial plane(S3) strikes east-west and moderately or gently dips north. Its axis(L3) subhorizontally plunges east-west. The F3 fold reoriented the original north-dipping S1 foliation and D2 shear sense into south-dipping S1 foliation(top-to-the west shear sense on this foliation) at its a limb. The four phase of deformation(D4) formed asymmetric-type open inclined fold(F4) of NE-vergence with NW striking axial plane(%) and NW-NNW plunging axis(L4). The F4 fold partly reoriented pre-D4 structural elements with east-west trend into those with north-south trend. Such reorientaion is recognized mainly in the Paleozoic metasedimentary rocks.

  • PDF

Quantitative Analysis on the Structure of Hambaek Syncline (정량적(定量的) 해석(解析)에 의(依)한 함백향사(咸白向斜) 구조(構造) 연구(硏究))

  • Park, Rin Sik;Min, Kyung Duck
    • Economic and Environmental Geology
    • /
    • v.13 no.3
    • /
    • pp.141-158
    • /
    • 1980
  • A geologic structure could be formed through various processes, because there are a number of factors which control the deformation of the Earth's crust. In geology, we could call it geological epistemology to describe exactly a geologic structure, and call it geological logics to infer logically the deforming process through which the geologic structure had been formed. Degree of legitimacy of geological logics depends upon the degree of exactness of geological epistemology. This study described quantitatively 3-dimensional Hambaek Syncline through computer analysis, and examined qualitatively into its deforming mechanism based on the results of 3-dimensional analysis of the structure. Input data for the computer analysis are dips and dip directions of bedding planes of the structure. The Hambaek Syncline disclose a minor fold group of NE-SW or NNE-SSW trend and a large scale fold of E-W trend. The conclusions of this study are as follows: (1) The fold of E-W trend is primary fold $(F_1)$ and the minor fold group of NE-SW or NNE-SSW trend secondary fold $(F_2)$. (2) Hambaek Syncline is cylindrical type fold. (3) Apparent axial trace of Hambaek syncline does not coincide with true axial trace. The apparent axial trace is $N70^{\circ}-80^{\circ}W$ in Gohan and Sabuk area, and changes to $N70^{\circ}-80^{\circ}E$ in the westward of the area, while the true axial trace is $N40^{\circ}-70^{\circ}W$ in the former, and $N60^{\circ}-80^{\circ}E$ in the latter area. (4) Westward dipping of axial plane of the minor fold group of NE-SW or NNE-SSW trend can be attributed to simple shear movements along overthrusts. (5) Angle between axial trace and the directional trace of the maximum principal compressive stress $({\sigma}_1)$ may not be perpendicular each other. The angle between them is governed by the following factors; 1) the plunge of fold axis 2) the dip of axial surface 3) cylindrisity (6) The mean axial trace of Hambaek Syncline $(F_1)$ is $N45.6^{\circ}W$, and the directional trace of ${\sigma}_1$ is $N52.4^{\circ}E$ (7) The mean axial trace of the minor fold group of NE-SW or NNE-SSW trend $(F_2)$ is $N21^{\circ}E$, and the directional trace of ${\sigma}_1$ is $N22^{\circ}W$.

  • PDF