• 제목/요약/키워드: folate pathway

검색결과 12건 처리시간 0.016초

Vitamin B6 Deficiency, Genome Instability and Cancer

  • Wu, Xia-Yu;Lu, Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권11호
    • /
    • pp.5333-5338
    • /
    • 2012
  • Vitamin B6 functions as a coenzyme in >140 enzymatic reactions involved in the metabolism of amino acids, carbohydrates, neurotransmitters, and lipids. It comprises a group of three related 3-hydroxy-2-methyl-pyrimidine derivatives: pyridoxine (PN), pyridoxal (PL), pyridoxamine (PM) and their phosphorylated derivatives [pyridoxal 5'-phosphate (PLP) and pyridoxamine 5'-phosphate (PMP)], In the folate metabolism pathway, PLP is a cofactor for the mitochondrial and cytoplasmic isozymes of serine hydroxymethyltransferase (SHMT2 and SHMT1), the P-protein of the glycine cleavage system, cystathionine ${\beta}$-synthase (CBS) and ${\gamma}$-cystathionase, and betaine hydroxymethyltransferase (BHMT), all of which contribute to homocysteine metabolism either through folate-mediated one-carbon metabolism or the transsulfuration pathway. Folate cofactors carry and chemically activate single carbons for the synthesis of purines, thymidylate and methionine. So the evidence indicates that vitamin B6 plays an important role in maintenance of the genome, epigenetic stability and homocysteine metabolism. This article focuses on studies of strand breaks, micronuclei, or chromosomal aberrations regarding protective effects of vitamin B6, and probes whether it is folate-mediated one-carbon metabolism or the transsulfuration pathway for vitamin B6 which plays critical roles in prevention of cancer and cardiovascular disease.

Association Study between Folate Pathway Gene Single Nucleotide Polymorphisms and Gastric Cancer in Koreans

  • Yoo, Jae-Young;Kim, Sook-Young;Hwang, Jung-Ah;Hong, Seung-Hyun;Shin, Ae-Sun;Choi, Il-Ju;Lee, Yeon-Su
    • Genomics & Informatics
    • /
    • 제10권3호
    • /
    • pp.184-193
    • /
    • 2012
  • Gastric cancer is ranked as the most common cancer in Koreans. A recent molecular biological study about the folate pathway gene revealed the correlation with a couple of cancer types. In the folate pathway, several genes are involved, including methylenetetrahydrofolate reductase (MTHFR), methyltetrahydrofolate-homocysteine methyltransferase reductase (MTRR), and methyltetrahydrofolate-homocysteine methyltransferase (MTR). The MTHFR gene has been reported several times for the correlation with gastric cancer risk. However, the association of the MTRR or MTR gene has not been reported to date. In this study, we investigated the association between the single nucleotide polymorphisms (SNPs) of the MTHFR, MTRR, and MTR genes and the risk of gastric cancer in Koreans. To identify the genetic association with gastric cancer, we selected 17 SNPs sites in folate pathway-associated genes of MTHFR, MTR, and MTRR and tested in 1,261 gastric cancer patients and 375 healthy controls. By genotype analysis, estimating odds ratios and 95% confidence intervals (CI), rs1801394 in the MTRR gene showed increased risk for gastric cacner, with statistical significance both in the codominant model (odds ratio [OR], 1.39; 95% CI, 1.04 to 1.85) and dominant model (OR, 1.34; 95% CI, 1.02 to 1.75). Especially, in the obese group (body mass index ${\geq}25kg/m^2$), the codominant (OR, 9.08; 95% CI, 1.01 to 94.59) and recessive model (OR, 3.72; 95% CI, 0.92 to 16.59) showed dramatically increased risk (p < 0.05). In conclusion, rs1801394 in the MTRR gene is associated with gastric cancer risk, and its functional significance need to be validated.

Effect of Dietary Folate on Hyperhomocysteinemia and Cellular Toxicity Induced Alcohol Administration in Rat Liver

  • Kim, Chung-Hyeon;Kim, Ki-Nam;Kim, Yeon-Soo;Chang, Nam-Soo
    • Molecular & Cellular Toxicology
    • /
    • 제1권2호
    • /
    • pp.137-141
    • /
    • 2005
  • The critical role of folate in the remethylation pathway for methionine synthesis from homocysteine has been well documented. Hyperhomocysteinemia resulting from inadequate folate nutrition has been implicated in increased incidence of macrovascular diseases, colorectal cancer, neural tube defects, etc. Chronic exposure to ethanol impairs folate nutrition and one-carbon metabolism in the liver, which often results in fatty liver due to a defective remetylation process. This study was carried out to investigate the chronic effects of moderate levels of alcohol and dietary folate on plasma homocysteine levels, and on histopathology and biochemical functions of the liver. Rats were raised on experimental diets with three levels of folate (0, 2, 8 mg/kg diet), and 50% ethanol (1.8 ml/kg body weight) was administered intragastically by intubation tubes three times a week for 10 weeks. Plasma homocysteine concentrations were found to be significantly influenced by dietary folate intake and alcohol administration. Among all treatment groups, plasma homocysteine levels were the highest in the animals receiving a combined treatment of folate deficient diet and alcohol administration. Plasma homocysteine concentrations were negatively correlated with folate concentration in the plasma (p<0.01) and liver (p<0.05). Among alcohol treated rats, increase in plasma homocysteine values due to macrovascular and microvascular fatty changes and spotted necrosis were observed more frequently in folate-deficient animals diet than those on folate-adequate and folate supplemented diets in alcohol-treated rats. These results indicate that folate supplementation above the recommended level might be beneficial in the prevention of alcohol-related hyperhomocysteinemia and abnormal histologic changes in the liver.

알코올과 식이엽산수준이 혈장 Homocysteine, 간기능, 간 조직검사에 미치는 영향 (Effects of Alcohol Administration and Dietary Folate on Plasma Homocysteine and Liver Histopathology)

  • 장남수;김기남;김연수;서종복;권오옥
    • Journal of Nutrition and Health
    • /
    • 제31권7호
    • /
    • pp.1121-1129
    • /
    • 1998
  • The critical role of folate vitamin in the remethylation pathway for methionine synthesis from homocysteine has been well documented. Hyperhomocysteinemia resulting from inadequate folate nutrition has been implicated in increased incidence of macrovascular diseases, colorectal cancer, neural tube defects, etc. Chronic exposure to ethanol impairs folate nutrition and one-carbon metabolism in the liver, which often results in fatty liver due to a defective remethylation process. This study was carried out to investigate the chronic effects of moderate levels of alcohol and dietary 131ate on plasma homocysteine levels, and on histopathology and biochemical functions of the liver Rats were raised on experimental diets with three levels of folate(0, 2, 8mg/kg diet), and 50% ethanol(1.8m1/kg body weight) was administered intragastrically by intubation tubes three times a week for 10 weeks. Plasma homocysteine concentrations were found to be significantly influenced by dietary folate intake and alcohol administration. Among all treatment groups, Plasma homocysteine levels were highest in the animals receiving a combined treatment of folate deficient diet and alcohol administration. Plasma homocysteine concentration was negatively correlated with folate concentration in the plasma(p<0.01) and liver(p<0.05). Among alcohol treated rats, increase in plasma homocysteine values due to ethanol was prevented by 131ate supplementation. When liver histological tests were performed, macrovascular and microvascular fatty changes and spotted necrosis were observed more frequently in folate-deficient animals diet than those on folate-adequate and folate-supplemented diets in alcohol-treated rats. These results indicate that folate supplementation above the recommended level might be beneficial in the prevention of alcohol-related hyperhomocystei-nemia and abnormal histologic changes in the liver due. (Korean J Nutrition 31(7) : l121-l129, 1998)

  • PDF

Engineering of Biosynthesis Pathway and NADPH Supply for Improved L-5-Methyltetrahydrofolate Production by Lactococcus lactis

  • Lu, Chuanchuan;Liu, Yanfeng;Li, Jianghua;Liu, Long;Du, Guocheng
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권1호
    • /
    • pp.154-162
    • /
    • 2021
  • L-5-methyltetrahydrofolate (5-MTHF) is one of the biological active forms of folate, which is widely used as a nutraceutical. However, low yield and serious pollution associated with the chemical synthesis of 5-MTHF hampers its sustainable supply. In this study, 5-MTHF production was improved by engineering the 5-MTHF biosynthesis pathway and NADPH supply in Lactococcus lactis for developing a green and sustainable biosynthesis approach. Specifically, overexpressing the key rate-limiting enzyme methylenetetrahydrofolate reductase led to intracellular 5-MTHF accumulation, reaching 18 ㎍/l. Next, 5-MTHF synthesis was further enhanced by combinatorial overexpression of 5-MTHF synthesis pathway enzymes with methylenetetrahydrofolate reductase, resulting in 1.7-fold enhancement. The folate supply pathway was strengthened by expressing folE encoding GTP cyclohydrolase I, which increased 5-MTHF production 2.4-fold to 72 ㎍/l. Furthermore, glucose-6-phosphate dehydrogenase was overexpressed to improve the redox cofactor NADPH supply for 5-MTHF biosynthesis, which led to a 60% increase in intracellular NADPH and a 35% increase in 5-MTHF production (97 ㎍/l). To reduce formation of the by-product 5-formyltetrahydrofolate, overexpression of 5-formyltetrahydrofolate cyclo-ligase converted 5-formyltetrahydrofolate to 5,10-methyltetrahydrofolate, which enhanced the 5-MTHF titer to 132 ㎍/l. Finally, combinatorial addition of folate precursors to the fermentation medium boosted 5-MTHF production, reaching 300 ㎍/l. To the best of our knowledge, this titer is the highest achieved by L. lactis. This study lays the foundation for further engineering of L. lactis for efficient 5-MTHF biosynthesis.

Mutation Screening and Association Study of the Folylpolyglutamate Synthetase (FPGS) Gene with Susceptibility to Childhood Acute Lymphoblastic Leukemia

  • Piwkham, Duangjai;Siriboonpiputtana, Teerapong;Beuten, Joke;Pakakasama, Samart;Gelfond, Jonathan AL;Paisooksantivatana, Karan;Tomlinson, Gail E;Rerkamnuaychoke, Budsaba
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권11호
    • /
    • pp.4727-4732
    • /
    • 2015
  • Background: Folylpolyglutamate synthetase (FPGS), an important enzyme in the folate metabolic pathway, plays a central role in intracellular accumulation of folate and antifolate in several mammalian cell types. Loss of FPGS activity results in decreased cellular levels of antifolates and consequently to polyglutamatable antifolates in acute lymphoblastic leukemia (ALL). Materials and Methods: During May 1997 and December 2003, 134 children diagnosed with ALL were recruited from one hospital in Thailand. We performed a mutation analysis in the coding regions of the FPGS gene and the association between single nucleotide polymorphisms (SNPs) within FPGS in a case-control sample of childhood ALL patients. Mutation screening was conducted by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) and subsequently with direct sequencing (n=72). Association analysis between common FPGS variants and ALL risk was done in 98 childhood ALL cases and 95 healthy volunteers recruited as controls. Results: Seven SNPs in the FPGS coding region were identified by mutation analysis, 3 of which (IVS13+55C>T, g.1297T>G, and g.1508C>T) were recognized as novel SNPs. Association analysis revealed 3 of 6 SNPs to confer significant increase in ALL risk these being rs7039798 (p=0.014, OR=2.14), rs1544105 (p=0.010, OR= 2.24), and rs10106 (p=0.026, OR=1.99). Conclusions: These findings suggested that common genetic polymorphisms in the FPGS coding region including rs7039789, rs1544105, and rs10106 are significantly associated with increased ALL risk in Thai children.

Folate Pathway Gene MTHFR C677T Polymorphism and Risk of Lung Cancer in Asian Populations

  • Rai, Vandana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권21호
    • /
    • pp.9259-9264
    • /
    • 2014
  • Background: Previous studies concerning the association between the 5,10-methylenetetrahydrofolate reductase (MTHFR) C677T gene polymorphism with lung cancer in Asian populations have provided inconclusive findings. Aim: A meta-analysis was performed to investigate a more reliable association between MTHFR C677T polymorphism and lung cancer in Asians. Materials and Methods: A comprehensive search was conducted to identify all case-control studies of MTHFR polymorphisms and lung cancer in Asia, using odds ratios (ORs) with 95% confidence intervals (CIs) to assess the strength of any association. Results: Meta-analysis results suggested that the MTHFR C677T polymorphism contributed to an increased lung cancer risk in Asian populations (for T vs C: OR=1.11, 95%CI=1.0-1.23; for CT vs CC: OR= 1.1, 95%CI= 0.95-1.2 ; for TT+CT vs CC: OR=1.13, 95%CI=1.0-1.30; for TT vs CC: OR=1.25, 95%CI=1.01-1.30; for TT vs CT+CC: OR=1.16, 95%CI=1.0-1.36). Conclusions: MTHFR C677T polymorphism is significantly associated with lung cancer in Asians.

The Methylenetetrahydrofolate Reductase C677T Polymorphism and Breast Cancer Risk in Asian Populations

  • Rai, Vandana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권14호
    • /
    • pp.5853-5860
    • /
    • 2014
  • Background: Methylenetetrahydrofolate (MTHFR) is the key enzyme of the folate metabolic pathway and several studies have pointed to association between the MTHFR C677T polymorphism and breast cancer risk. Although significant association was observed in some studies, in others no clear link could be established. Objective: A meta-analysis of published Asian case control studies was therefor carried out to shed further light on any C677T breast cancer association. Materials and Methods: PubMed, Springer Link, Google Scholar and Elsevier databases were searched for case control studies of associations between MTHFR C677T polymorphism and breast cancer risk. Odds ratios (ORs) with 95% confidence intervals (CIs) were estimated to assess the association. A total of 36 studies including 8,040 cases and 10,008 controls were included in the present meta-analysis. Results: Overall, a significantly elevated breast cancer risk was associated with the T allele and TT genotype in homozygote comparison and dominant genetic models when all studies were pooled into the meta-analysis (T vs C (allele contrast model): OR=1,23, 95%CI=1.13-1.37, p=0.000 ; TT vs CC(homozygote model): OR=1.38, 95%CI=1.16-1.63, p=0.0003; TT+CT vs CC (dominant model): OR=1.12, 95%CI=1.01-1.23, p=0.02). Conclusions: The present meta-analysis strongly suggested a significant association between the MTHFR C677T polymorphism and risk of breast cancer in Asian populations.

Genome Profiling for Health Promoting and Disease Preventing Traits Unraveled Probiotic Potential of Bacillus clausii B106

  • Kapse, N.G.;Engineer, A.S.;Gowdaman, V.;Wagh, S.;Dhakephalkar, P.K.
    • 한국미생물·생명공학회지
    • /
    • 제46권4호
    • /
    • pp.334-345
    • /
    • 2018
  • Spore-forming Bacillus species are commercially available probiotic formulations for application in humans. They have health benefits and help prevent disease in hosts by combating entero-pathogens and ameliorating antibiotic-associated diarrhea. However, the molecular and cellular mechanisms of these benefits remain unclear. Here, we report the draft genome of a potential probiotic strain of Bacillus clausii B106. We mapped and compared the probiotic profile of B106 with other reference genomes. The draft genome analysis of B106 revealed the presence of ADI pathway genes, indicating its ability to tolerate acidic pH and bile salts. Genes encoding fibronectin binding proteins, enolase, as well as a gene cluster involved in the biosynthesis of exopolysaccharides underscored the potential of B106 to adhere to the intestinal epithelium and colonize the human gut. Genes encoding bacteriocins were also detected, indicating the antimicrobial ability of this isolate. The presence of genes encoding vitamins, including Riboflavin, Folate, and Biotin, also indicated the health-promoting ability of B106. Resistance of B106 to multiple antibiotics was evident from the presence of genes encoding resistance to chloramphenicol, ${\beta}$-lactams, Vancomycin, Tetracycline, fluoroquinolones, and aminoglycosides. The findings indicate the significance of B. clausii B106 administration during antibiotic treatment and its potential value as a probiotic strain to replenish the health-promoting and disease-preventing gut flora following antibiotic treatment.

Investigation of the association of idiopathic male infertility with polymorphisms in the methionine synthase (MTR) gene

  • Tanoomand, Asghar;Hajibemani, Abolfazl;Abouhamzeh, Beheshteh
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제46권3호
    • /
    • pp.107-111
    • /
    • 2019
  • Objective: Spermatogenesis is a complex process that is regulated by a number of genes, some of which are involved in folate-dependent 1-carbon metabolism. Methionine synthase (encoded by MTR) is a key enzyme participating in this pathway. This study aimed to investigate the relationship of the MTR 2756A > G polymorphism with idiopathic male fertility in the Iranian population. Methods: The participants of this study included 100 men with idiopathic infertility and 100 healthy men as the control group. Genotyping of MTR 2756A > G was performed using the polymerase chain reaction and restriction fragment length polymorphism technique. The obtained data were analyzed using SPSS ver. 20.0 with a level of confidence of p< 0.05. Results: The frequencies of the A and G alleles at this locus were 77% and 23% in infertile patients and 84% and 16% in the control group, respectively. The frequencies of the GG, GA, and AA genotypes were 5%, 36%, and 59% in the infertile patients versus 3%, 27%, and 70% in the control group, respectively. No significant difference was observed in any genetic models. Conclusion: In general, the findings of this study suggest that the MTR 2756A > G single-nucleotide polymorphism is not a predisposing factor for idiopathic infertility in men.