• Title/Summary/Keyword: fog feature

Search Result 18, Processing Time 0.019 seconds

Image-Based Fog Detection Algorithm Using a Neural Network (신경회로망 기반의 주야간 안개 감지 알고리즘)

  • Kang, Chung-Hun;Kim, Gyeong-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.3
    • /
    • pp.673-676
    • /
    • 2017
  • In this paper, we propose a day and night fog detection algorithm that is not affected by lighting conditions. First, we present the definitions and the extraction methods of fog features in daytime and nighttime environments, respectively. We then propose the fog detection algorithm using a neural network from the fog features. A set of experiments has been conducted with images taken at various environments, and the average recall of the proposed algorithm is 97.5%.

Task Distribution Scheme based on Service Requirements Considering Opportunistic Fog Computing Nodes in Fog Computing Environments (포그 컴퓨팅 환경에서 기회적 포그 컴퓨팅 노드들을 고려한 서비스 요구사항 기반 테스크 분배 방법)

  • Kyung, Yeunwoong
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.1
    • /
    • pp.51-57
    • /
    • 2021
  • In this paper, we propose a task distribution scheme in fog computing environment considering opportunistic fog computing nodes. As latency is one of the important performance metric for IoT(Internet of Things) applications, there have been lots of researches on the fog computing system. However, since the load can be concentrated to the specific fog computing nodes due to the spatial and temporal IoT characteristics, the load distribution should be considered to prevent the performance degradation. Therefore, this paper proposes a task distribution scheme which considers the static as well as opportunistic fog computing nodes according to their mobility feature. Especially, based on the task requirements, the proposed scheme supports the delay sensitive task processing at the static fog node and delay in-sensitive tasks by means of the opportunistic fog nodes for the task distribution. Based on the performance evaluation, the proposed scheme shows low service response time compared to the conventional schemes.

Hardware Implementation of Fog Feature Based on Coefficient of Variation Using Normalization (정규화를 이용한 변동계수 기반 안개 특징의 하드웨어 구현)

  • Kang, Ui-Jin;Kang, Bong-Soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.6
    • /
    • pp.819-824
    • /
    • 2021
  • As technologies related to image processing such as autonomous driving and CCTV develop, fog removal algorithms using a single image are being studied to improve the problem of image distortion. As a method of predicting fog density, there is a method of estimating the depth of an image by generating a depth map, and various fog features may be used as training data of the depth map. In addition, it is essential to implement a hardware capable of processing high-definition images in real time in order to apply the fog removal algorithm to actual technologies. In this paper, we implement NLCV (Normalize Local Coefficient of Variation), a feature of fog based on coefficient of variation, in hardware. The proposed hardware is an FPGA implementation of Xilinx's xczu7ev-2ffvc1156 as a target device. As a result of synthesis through the Vivado program, it has a maximum operating frequency of 479.616MHz and shows that real-time processing is possible in 4K UHD environment.

Behavior of Stress Corrosion Cracking in Structural Steel under Acid Fog Environment (산성안개하에서 기계·구조용강의 응력부식균열 거동)

  • Lim, Yong Ho;Kim, Min-Gun
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.291-295
    • /
    • 1997
  • The tests of stress corrosion cracking in structural carbon steel were carried out under the conditions of acid fog and general water. As the result of measurement SCC rupture time under acid fog was observed to be much shorter than that of general water at the same stress level. Therefore, acid fog drops the SCC strength in structural carbon steel due to strong corrosion. In the SCC process by acid fog, crack initiation was caused by pit corrosion and local stress concentration, and distinctive feature of crack growth shows branching since crack grows to the corrosion direction. Moreover, corrosion products were observed by clevage corrosion on the crack surfaces.

  • PDF

Toward Energy-Efficient Task Offloading Schemes in Fog Computing: A Survey

  • Alasmari, Moteb K.;Alwakeel, Sami S.;Alohali, Yousef
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.163-172
    • /
    • 2022
  • The interconnection of an enormous number of devices into the Internet at a massive scale is a consequence of the Internet of Things (IoT). As a result, tasks offloading from these IoT devices to remote cloud data centers become expensive and inefficient as their number and amount of its emitted data increase exponentially. It is also a challenge to optimize IoT device energy consumption while meeting its application time deadline and data delivery constraints. Consequently, Fog Computing was proposed to support efficient IoT tasks processing as it has a feature of lower service delay, being adjacent to IoT nodes. However, cloud task offloading is still performed frequently as Fog computing has less resources compared to remote cloud. Thus, optimized schemes are required to correctly characterize and distribute IoT devices tasks offloading in a hybrid IoT, Fog, and cloud paradigm. In this paper, we present a detailed survey and classification of of recently published research articles that address the energy efficiency of task offloading schemes in IoT-Fog-Cloud paradigm. Moreover, we also developed a taxonomy for the classification of these schemes and provided a comparative study of different schemes: by identifying achieved advantage and disadvantage of each scheme, as well its related drawbacks and limitations. Moreover, we also state open research issues in the development of energy efficient, scalable, optimized task offloading schemes for Fog computing.

Enhancement of Object Detection using Haze Removal Approach in Single Image (단일 영상에서 안개 제거 방법을 이용한 객체 검출 알고리즘 개선)

  • Ahn, Hyochang;Lee, Yong-Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.2
    • /
    • pp.76-80
    • /
    • 2018
  • In recent years, with the development of automobile technology, smart system technology that assists safe driving has been developed. A camera is installed on the front and rear of the vehicle as well as on the left and right sides to detect and warn of collision risks and hazards. Beyond the technology of simple black-box recording via cameras, we are developing intelligent systems that combine various computer vision technologies. However, most related studies have been developed to optimize performance in laboratory-like environments that do not take environmental factors such as weather into account. In this paper, we propose a method to detect object by restoring visibility in image with degraded image due to weather factors such as fog. First, the image quality degradation such as fog is detected in a single image, and the image quality is improved by restoring using an intermediate value filter. Then, we used an adaptive feature extraction method that removes unnecessary elements such as noise from the improved image and uses it to recognize objects with only the necessary features. In the proposed method, it is shown that more feature points are extracted than the feature points of the region of interest in the improved image.

Design and Evaluation of an Edge-Fog Cloud-based Hierarchical Data Delivery Scheme for IoT Applications (사물인터넷 응용을 위한 에지-포그 클라우드 기반 계층적 데이터 전달 방법의 설계 및 평가)

  • Bae, Ihn-Han
    • Journal of Internet Computing and Services
    • /
    • v.19 no.1
    • /
    • pp.37-47
    • /
    • 2018
  • The number of capabilities of Internet of Things (IoT) devices will exponentially grow over the next years. These devices may generate a vast amount of time-constrained data. In the context of IoT, data management should act as a layer between the objects and devices generating the data and the applications accessing the data for analysis purposes and services. In addition, most of IoT services will be content-centric rather than host centric to increase the data availability and the efficiency of data delivery. IoT will enable all the communication devices to be interconnected and make the data generated by or associated with devices or objects globally accessible. Also, fog computing keeps data and computation close to end users at the edge of network, and thus provides a new breed of applications and services to end users with low latency, high bandwidth, and geographically distributed. In this paper, we propose Edge-Fog cloud-based Hierarchical Data Delivery ($EFcHD^2$) method that effectively and reliably delivers IoT data to associated with IoT applications with ensuring time sensitivity. The proposed $EFcHD^2$ method stands on basis of fully decentralized hybrid of Edge and Fog compute cloud model, Edge-Fog cloud, and uses information-centric networking and bloom filters. In addition, it stores the replica of IoT data or the pre-processed feature data by edge node in the appropriate locations of Edge-Fog cloud considering the characteristic of IoT data: locality, size, time sensitivity and popularity. Then, the performance of $EFcHD^2$ method is evaluated through an analytical model, and is compared to fog server-based and Content-Centric Networking (CCN)-based data delivery methods.

A Realtime Road Weather Recognition Method Using Support Vector Machine (Support Vector Machine을 이용한 실시간 도로기상 검지 방법)

  • Seo, Min-ho;Youk, Dong-bin;Park, Sae-rom;Jun, Jin-ho;Park, Jung-hoon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.1025-1032
    • /
    • 2020
  • In this paper, we propose a method to classify road weather conditions into rain, fog, and sun using a SVM (Support Vector Machine) classifier after extracting weather features from images acquired in real time using an optical sensor installed on a roadside post. A multi-dimensional weather feature vector consisting of factors such as image sharpeness, image entropy, Michelson contrast, MSCN (Mean Subtraction and Contrast Normalization), dark channel prior, image colorfulness, and local binary pattern as global features of weather-related images was extracted from road images, and then a road weather classifier was created by performing machine learning on 700 sun images, 2,000 rain images, and 1,000 fog images. Finally, the classification performance was tested for 140 sun images, 510 rain images, and 240 fog images. Overall classification performance is assessed to be applicable in real road services and can be enhanced further with optimization along with year-round data collection and training.

Research study on cognitive IoT platform for fog computing in industrial Internet of Things (산업용 사물인터넷에서 포그 컴퓨팅을 위한 인지 IoT 플랫폼 조사연구)

  • Sunghyuck Hong
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.1
    • /
    • pp.69-75
    • /
    • 2024
  • This paper proposes an innovative cognitive IoT framework specifically designed for fog computing (FC) in the context of industrial Internet of Things (IIoT). The discourse in this paper is centered on the intricate design and functional architecture of the Cognitive IoT platform. A crucial feature of this platform is the integration of machine learning (ML) and artificial intelligence (AI), which enhances its operational flexibility and compatibility with a wide range of industrial applications. An exemplary application of this platform is highlighted through the Predictive Maintenance-as-a-Service (PdM-as-a-Service) model, which focuses on real-time monitoring of machine conditions. This model transcends traditional maintenance approaches by leveraging real-time data analytics for maintenance and management operations. Empirical results substantiate the platform's effectiveness within a fog computing milieu, thereby illustrating its transformative potential in the domain of industrial IoT applications. Furthermore, the paper delineates the inherent challenges and prospective research trajectories in the spheres of Cognitive IoT and Fog Computing within the ambit of Industrial Internet of Things (IIoT).

NUMERICAL SIMULATION OF COASTAL INUNDATION OVER DISCONTINUOUS TOPOGRAPHY

  • Yoon, Sung-Bum;Cho, Ji-Hoon
    • Water Engineering Research
    • /
    • v.2 no.2
    • /
    • pp.75-87
    • /
    • 2001
  • A new moving boundary technique for leap-frog finite difference numerical mode is proposed for the resonable simulation of coastal inundation over discontinuous topography. The new scheme improves the moving boundary technique developed by Imamura(1996). The present scheme is tested using the analytical solution of Thacker(1981) for the case of free oscillation with moving boundary in a parabolic bowl. Finally, a numerical simulation is conducted for the flooding over a tidal barrier constructed on a simple concave geometry. A general feature of inundation over a discontinuous topography is well described by the numerical model.

  • PDF