In order to take a good look at effectiveness of cooling of Fog system and Pad-Fan system, we chose 49 farm households which were installed evaporative cooling system and 2 farm households which were installed Pad-Fan system and Fog system for a test. We execute the test on 29 households out of 49.6 households, which were installed Pad-Fan system, were able to use; however, 6 household out of 9 which were installed Fog system couldn't use it. The main reason was the clogged on nozzle. The cooling efficiency on Pad-Fan system was 77.4%, but it was very poor on Fog system. Since there are many problems on Fog system, we need more research on size of fog, the location of nozzle, control of Fog systems.
Magazine of the Korean Society of Agricultural Engineers
/
v.41
no.1
/
pp.60-71
/
1999
This study was performed to improve underirable warm greenhouse environment by fog cooling system in summer season. The resultsof droplet size analysis and cooling effects for fog cooling system are summarized as follows ; 1. At the pump pressure of 70kgf/$\textrm{cm}^2$ , the mean (SMD) drop size was 22.6${\mu}{\textrm}{m}$ and the maximum and minimum drop size was 45.68${\mu}{\textrm}{m}$ and 1.73${\mu}{\textrm}{m}$ , respectively, and almost all of the drop size was less than 40${\mu}{\textrm}{m}$. 2. The temperature of fog cooling greenhouse with 60% shading was dropped more than 2$^{\circ}C$ below the ambient temperature , while the greenhouse temperature without shading was 1$^{\circ}C$ higher than the ambient temperature. 3. It was found that fog spraying intervals were significantly influential on cooling effect. 4. When the greenhouse was ventilated sufficiently by natural vent system, green house temperature could be maintained by 2.5$^{\circ}C$ lower than the ambient temperature, while it was difficult to drop the greenhouse temperature below ambient temeperature without sufficient ventilation. 5. It was found that the temperature of experimental greenhouse could be maintained 3$^{\circ}C$ to 14$^{\circ}C$ lower that of control greenhouse though there were variations depending on experimental and weather conditions.
This study was carried out not only to develop CFD model for numerically simulating fog cooling system but also to verify the validity of the developed model by data measured in fag cooling greenhouse. In addition the developed model was applied to investigate the effects of spraying water temperature, spraying water amount, spraying interval and evaporation percentage on the performance of the fog cooling system. According to the simulation results, the temperature differences between the measured and predicted temperatures at each measurement point were $0.1~1.4^{\circ}C$ in case of no shading and $0.2~2.3^{\circ}C$ in close of shading. The humidity differences were 0.3~6.0% and 0.7~10.6%, respectively in the cases of no shading and shading. Because the predicted data showed a good agreement with the measured ones, the developed model is supposed to be able to predict the cooling effect of the fog cooling system. The performance of fog cooling system was greatly influenced by spraying water amount, spraying interval and evaporation percentage, but it was not influenced by spraying water temperature.
Park, Seok Ho;Moon, Jong Pil;Kim, Jin Koo;Kim, Seoung Hee
Journal of Bio-Environment Control
/
v.29
no.3
/
pp.265-276
/
2020
This study was conducted to provide a basis for raising farm income by increasing the yield and extending the cultivation period by creating an environment where crops can be cultivated normally during high temperatures in summer. The maximum cooling load of the multi-span greenhouse with a floor area of 504 ㎡ was found to be 462,609 W, and keeping the greenhouse under 32℃ without shading the greenhouse at a high temperature, it was necessary to fog spray 471.6 L of water per hour. The automatic fog cooling control device was developed to effectively control the fog device, the flow fan, and the light blocking device constituting the fog cooling system. The fog cooling system showed that the temperature of the greenhouse could be lowered by 6℃ than the outside temperature. The relative humidity of the fog-cooled greenhouse was 40-80% during the day, about 20% higher than that of the control greenhouse, and this increase in relative humidity contributed to the growth of cucumbers. The relative humidity of the fog cooling greenhouse during the day was 40-80%, which was about 20% higher than that of the control greenhouse, and this increase in relative humidity contributed to the growth of cucumbers. The yield of cucumbers in the fog-cooled greenhouse was 1.8 times higher in the single-span greenhouse and two times higher in the multi-span greenhouse compared to the control greenhouse.
Ji Yeop, Kim;Cheol, Jeong;Won Jun, Kang;Jeong Ung, Kim;Jung Goo, Hong
Journal of ILASS-Korea
/
v.27
no.4
/
pp.173-180
/
2022
Cooling fog is being used in various parts of society such as fine dust reduction, cleanliness, and temperature drop. Cooling fog has the advantage of low flow rate and ease of use compared to other spray systems. In the case of cooling fog, it was confirmed that the injection angle increased as the pressure increased and the nozzle diameter increased. In this study, the minimum injection angle was 33.61 degrees and the maximum injection angle was 107.38 degrees. It was confirmed that the larger the nozzle diameter and the smaller the pressure, the larger the droplet size. In addition, it was confirmed that the Sauter Mean Diameter (SMD) increased along the X and Y axis directions. It was confirmed that the size of the droplet decreases as it approaches the nozzle tip due to the characteristics of the nozzle design factor.
The objective of the present study is to identify the applicability of a low pressure fogging system for cooling commercial tomato greenhouse. In particular, the cooling system in this experiment utilizes low pressure spray nozzles which were developed in Korea recently. The experimental result that the temperature in fog-cooled greenhouse was lower than the non-cooled greenhouse showed the cooling effect by the low pressure fogging system. But because the relative humidity in fog-cooled greenhouse was comparatively low, the satisfactory cooling effect could be acquired by narrowing the space of fog nozzles and extending fogging time to supply more fog spray quantity. The variation of temperature distribution in fog-cooled greenhouse along timelag was insignificant during short time, but that was great during long period of day. This result showed the variation of temperature along timelag was slight by fog cooling but great by other factors like radiation, ventilation, air flow, etc. The advanced operation technology of fog system was required to reduce the variation of temperature along time lag. We plan to suggest the advanced installation and operation technology of low pressure fogging system for cooling commercial tomato greenhouse by further experiments in near future.
This study was conducted to evaluate the effects of the fog-cooling system on the growth and yield characteristics of two large-fruited paprika cultivars during summer cultivation season. The temperature inside the greenhouse equipped with fog-cooling system was $2-3^{\circ}C$ lower than that in the control. The results of study show the possibilities of maintaining indoor temperatures below $35^{\circ}C$ and relative humidity at the level of 80% using fogcooling system during hot seasons of the year. Plant height, fruit weight and number of fruits per plant were higher for both cultivars in the fog-cooling treatment compared to those in control. Mean fruit weight and yield per unit area were higher in the fog-cooling treatment than those in the control. However there were no significant differences in sugar content, flesh thickness and locule number of fruits due to fog-cooling system. Number of fruits with epidermal cracking was decreased in the fog-cooling system for both paprika cultivars. Mineral contents of plants such as nitrogen (N), potassium (K), calcium (Ca), magnesium (Mg), were not affected due to fog-cooling treatment.
According to a NASA Goddard Institute for Space Studies report, temperatures have risen by approximately 1℃ so far, based on temperatures recorded in 1880. The 2003 heatwave in Europe affected approximately 35,000 people across Europe. In this study, a cooling fog, which is used in smart cities, was designed to efficiently reduce the temperature during a heatwave and its pilot test results were interpreted. A model experiment of the cooling fog was conducted using a chamber, in which nano mist spray instruments and spray nozzles were installed. The designed cooling fog chamber model showed a temperature reduction of up to 13.8℃ for artificial pavement and up to 8.0℃ for green surfaces. However, this model was limited by constant wind speed in the experiment. Moreover, if the cooling fog is used when the wind speed is more than 3m/s in the active green zone, the temperature reduction felt by humans is expected to be even greater. As a second study, the effect of cooling fog on temperature reduction was analyzed by installing a pilot test inside the Land Housing Institute (LHI). The data gathered in this research can be useful for the study of heat reduction techniques in urban areas.
In order to provide fundamental data on utilization of dehumidifier in greenhouses, a condensing type dehumidifier using ground water as a coolant was developed and tested dehumidification performance. The developed dehumidifier was applied to greenhouse with fog cooling system and effect of dehumidification on improvement of evaporative cooling efficiency was analyzed. Results of the dehumidifier performance test showed that dehumidification using ground water as a coolant was sufficiently possible in fog cooling greenhouse. When the set point temperature of greenhouse cooling was $32^{\circ}C$ and as temperatures of ground water rose from $15^{\circ}C\;to\;18^{\circ}C,\;21^{\circ}C\;and\;24^{\circ}C$, dehumidification rates decreased by $17.7\%,\;35.4\%\;and\;52.8\%$, respectively. As flow rates of ground water reduced to $75\%\;and\;50\%$, dehumidification rates decreased by $12.1\%\;and\;30.5\%$, respectively. Cooling efficiency of greenhouse equipped with fog system was distinctly improved by artificial dehumidification. When the ventilation rate was 0.7 air exchanges per minute, dehumidification rates of the fog cooling greenhouse caused by natural ventilation were 53.9%-74.4% and they rose up to 75.4%-95.9% by operating the dehumidifier. In case of using the ground water of $18^{\circ}C$ and flow rate of design condition, it was analyzed that whole fog spraying water can be dehumidified even if the ventilation rate is 0.36 exchanges per minute. As a utilization of dehumidifier, it is possible to improve cooling efficiency of fog system in naturally ventilated greenhouses.
Among the various vegetables eggplant and gourd family can stand against high temperature environmental condition, about 35$^{\circ}C$. However, most of greenhouse farmers are giving up crop cultivation during hot summer season due to extreme temperature, 4$0^{\circ}C$ or above, condition of greenhouse interior. To improve this inferior crop growth condition, for nozzle system was installed in the pet greenhouse and the effect of fog system was investigated in order to determine fog water amount and the required fog nozzle numbers according to house volumes. MEE fog nozzle was selected for this Investigation which can produce water particle size of 27${\mu}{\textrm}{m}$ with water amount of 100$m\ell$ at pumping pressure of 70kg/$\textrm{cm}^2$. House cooling test was conducted in the pet greenhouse with one minute fogging and one minute air ventilation without stopping. It maintained 32$^{\circ}C$ at the house interior when the atmosphere and the house temperature were 35 and 4$0^{\circ}C$, respectively. And, an experimental equation was developed through calculating the changes of relative humidity and temperature with psychrometric equation which revealed the moisture transfer pattern between the house air and fog system. It showed that the required water fogging amounts to reduce 1$0^{\circ}C$, 40 to 3$0^{\circ}C$, needs 80.7$\ell$ for 1-2W(8,350㎥) and 99.9$\ell$ for 3-2G-3S(10,330㎥) type greenhouse with particle size of 27${\mu}{\textrm}{m}$.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.