• 제목/요약/키워드: fog

검색결과 721건 처리시간 0.023초

인천국제공항 안개사례를 통한 경제적 재해 규모분석 (Analysis of the Economic Disaster Scale for Fog Case occurred at the Incheon International Airport)

  • 정우식;이중우;최효진;권태순;백종호;박종길
    • 한국항공운항학회지
    • /
    • 제15권2호
    • /
    • pp.40-47
    • /
    • 2007
  • Poor visibility is very important information in aviation meteorology factor, because secure safety, trust and economical efficiency increase for aircraft movements. The Incheon International Airport 4 years recent times was to period aircraft movements delay and cancellation due to meteorology is 52% and 30%. And then fog is 63% and 43% in meteorology factor. Therefore, the analysis against the economic loss size of an airline due to the fog is necessary. This study is indirectly estimated economic disaster scale of flight return and cancellation due to the fog in the Incheon International Airport from 5 to 6 March 2006. This is based on an aviation operational statistics data and meteorology observation data. Result of estimated, total 14 flights return to Gimpo, Jeju and Gimhae in this period are about 208,205,700 won. And estimated total 10 flights cancellation are about 718,657,000 won.

  • PDF

포그 컴퓨팅 환경에서의 보안 및 프라이버시 이슈에 대한 연구 (Security and Privacy Issues of Fog Computing)

  • 남현재;최호열;신형준;권현수;정종민;한창희;허준범
    • 한국통신학회논문지
    • /
    • 제42권1호
    • /
    • pp.257-267
    • /
    • 2017
  • IoT(사물인터넷) 기술이 발전하여 적용 분야가 다양해지고 이에 따라 서비스를 이용하는 사용자 수도 크게 증가하였다. 수많은 IoT 디바이스들에 의해 발생되는 실시간 대용량 데이터를 클라우드 컴퓨팅 환경에서 처리하는 것은 더 이상 적합하지 않다. 이러한 문제를 해결하기 위해서 응답시간을 최소화 하고 실시간 처리가 적합하도록 하는 포그 컴퓨팅이 제안되었다. 하지만 포그 컴퓨팅이라는 새로운 패러다임에 대한 보안 요구사항이 아직 정립되지 않았다. 이 논문에서는 포그 컴퓨팅에 대한 모델 정의와 정의된 모델에 대한 보안 요구사항을 정리하였다.

LDPE에서 부시형 전기트리의 성장에 수반되는 부분방전 펄스의 특성 (Properties of PD Pulses accompanying with propagation of Bush-type tree in LDPE)

  • 박영국;강성화;정수현;박철현;임기조
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 춘계학술대회 논문집
    • /
    • pp.293-296
    • /
    • 1998
  • Surface electrical conduction in insulator is most important factor to assess the insulation performances of outdoor insulating materials. In this paper, contamination performance of the widely used materials for outdoor insulator - porcelain, EPDM, Silicone rubber - were discussed by measuring properties of average leakage current and scintillation discharge pulses under artificial contamination conditions. The artificial contaminations used were deionized distilled water fog, 0.5wt% NaCl salt fog of light pollution and 2wt% NaCl salt fog of medium pollution. The average leakage current was appeared linearly with applied voltage at dry and clean surface condition. The magnitude of leakage current was almost same at different kinds of samples. In case of deionized distilled water fog, the characteristics of leakage current and applied voltage was most different to that in case of dry and clean condition. In case of salt fog pollution condition, The leakage current was increased above critical voltage. The scintillation discharges were also activated at the level. the leakage current and scintillation discharges were increased with increasing pollution degree. The resistance to pollution properties of silicone rubber appeared excellent among them.

  • PDF

옥외 애자용 재료의 표면 전기전도특성 (Properties of Surface Electrical Conduction in Materials for Outdoor Insulator)

  • 박영국;강성화;정수현;이운석;임기조
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 춘계학술대회 논문집
    • /
    • pp.207-210
    • /
    • 1998
  • Surface electrical conduction in insulator is most important factor to assess the insulation performances of outdoor insulating materials. In this paper, contamination performance of the widely used materials for outdoor insulator - porcelain, EPDM, Silicone rubber - were discussed by measuring properties of average leakage current and scintillation discharge pulses under artificial contamination conditions. The artificial contaminations used were deionized distilled water fog, 0.5wt% NaCl salt fog of light pollution and 2wt% NaCl salt fog of medium pollution. The average leakage current was appeared linearly with applied voltage at dry and clean surface condition. The magnitude of leakage current was almost same at different kinds of samples. In case of deionized distilled water fog, the characteristics of leakage current and applied voltage was most different to that in case of dry and clean condition. In case of salt fog pollution condition. The leakage current was increased above critical voltage. The scintillation discharges were also activated at the level the leakage current and scintillation discharges were increased with increasing pollution degree. The resistance to pollution properties of silicone rubber appeared excellent among them.

  • PDF

여러환경조건에 의한 Silicon애자의 표면열화 진단기술 (Diagnosis Technique of Surface Aging according to Various Environment Condition for Silicon Polymer Insulator)

  • 박재준;정명연;이승욱;김정부;송영철;김희동
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 춘계학술대회 논문집 방전 플라즈마 유기절연재료 초전도 자성체연구회
    • /
    • pp.76-81
    • /
    • 2004
  • This paper presents the results of spectral analysis of leakage current waveforms on contaminated insulators under various fog and environment conditions(salt fog, clean fog, rain) The larger the leakage current during 200ms, the higer the power spectrum at 60Hz. For almost equal maximum current during 200ms, however, the spectrum at 60hz and the odd order harmonics increase emphatically when discharges occur continuously for several half-waves. If contaminated insulators suffers from high salt-density fog, the leakage current occurs with high crest value intermittently, results in the low spectrum. Analysis of leakage current data showed that this electrical activity was characterized by transient arcing behavior contaminants are deposited on the insulator surface during salt fog tests. This provides a path for the leakage current to flow along the surface of the insulator. It is important to have an indication of the pollution accumulation in order to evulate the test performance of a particular insulator. If the drop in surface resistivity is severe enough, then the leakage current may escalate into s service interrupting flashover that degrade power quality.

  • PDF

환경조건에 따른 EPDM 고분자 애자의 누설전류파형과 스펙트럼 분석 (Leakage Current Waveforms and Spectrum Analysis of EPDM Polymer Insulator according to Environment Condition)

  • 박재준;김정부;송영철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 춘계학술대회 논문집 방전 플라즈마 유기절연재료 초전도 자성체연구회
    • /
    • pp.82-86
    • /
    • 2004
  • This research is about the result of leakage current waveform about the situation of surface leakage current and environmental changes(Salt fog, clean fog and rain) by EPDM polymer insulators' amount of salt. The researcher presents the result of changing about fundamental harmonic, 3rd harmonic and 5th harmonic from starting point of supplying power to flashover. In this study, researched environmental affects (clean fog, salt fog and rain) about surface aging of polymer insulators and used frequency spectrum of leakage current waveform to develop the diagnostic technique of surface aging. When amount of salt contents changed, surface aging stage and the degree of aging (distortion factor) about 3rd and 5th harmonic waveform on low frequency harmonic wave. The distortion factor which is harmonic percentage about basic harmonic is important pointer to evaluate the surface condition of polymer insulators.

  • PDF

안개 상태에 따른 선박 자동제어 장치 (Automatic Ship Control System to According for Fog Conditions)

  • 이경민;김신후;김갑기;박성현
    • 해양환경안전학회지
    • /
    • 제23권6호
    • /
    • pp.754-758
    • /
    • 2017
  • 본 논문에서는 선박의 안전운항을 위하여 안개 발생 시 엔진을 자동으로 제어하여 피해를 최소화하거나 회피할 수 있도록 자동 제어 시스템을 설계 및 제작 하였다. 제작된 동력 자동제어시스템은 ATmega128과 RPM감지회로를 사용하여 안개발생부에서 인위적으로 안개를 발생시켜 RPM의 변화량을 측정하였다. 이를 위하여 전체구성도를 작성하였으며 홀센서가 있는 모터를 사용하여 PWM 제어를 하도록 ATmega128에 Source code를 적용시켰다. 추후, 제작된 동력 자동제어장치를 통하여 실제 선박에서의 실험 및 안전성평가를 마련할 계획이다.

A New Application of Unsupervised Learning to Nighttime Sea Fog Detection

  • Shin, Daegeun;Kim, Jae-Hwan
    • Asia-Pacific Journal of Atmospheric Sciences
    • /
    • 제54권4호
    • /
    • pp.527-544
    • /
    • 2018
  • This paper presents a nighttime sea fog detection algorithm incorporating unsupervised learning technique. The algorithm is based on data sets that combine brightness temperatures from the $3.7{\mu}m$ and $10.8{\mu}m$ channels of the meteorological imager (MI) onboard the Communication, Ocean and Meteorological Satellite (COMS), with sea surface temperature from the Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA). Previous algorithms generally employed threshold values including the brightness temperature difference between the near infrared and infrared. The threshold values were previously determined from climatological analysis or model simulation. Although this method using predetermined thresholds is very simple and effective in detecting low cloud, it has difficulty in distinguishing fog from stratus because they share similar characteristics of particle size and altitude. In order to improve this, the unsupervised learning approach, which allows a more effective interpretation from the insufficient information, has been utilized. The unsupervised learning method employed in this paper is the expectation-maximization (EM) algorithm that is widely used in incomplete data problems. It identifies distinguishing features of the data by organizing and optimizing the data. This allows for the application of optimal threshold values for fog detection by considering the characteristics of a specific domain. The algorithm has been evaluated using the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) vertical profile products, which showed promising results within a local domain with probability of detection (POD) of 0.753 and critical success index (CSI) of 0.477, respectively.

A Distributed Fog-based Access Control Architecture for IoT

  • Alnefaie, Seham;Cherif, Asma;Alshehri, Suhair
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권12호
    • /
    • pp.4545-4566
    • /
    • 2021
  • The evolution of IoT technology is having a significant impact on people's lives. Almost all areas of people's lives are benefiting from increased productivity and simplification made possible by this trending technology. On the downside, however, the application of IoT technology is posing some security challenges, among them, unauthorized access to IoT devices. This paper presents an Attribute-based Access Control Fog architecture that aims to achieve effective distribution, increase availability and decrease latency. In the proposed architecture, the main functional points of the Attribute-based Access Control are distributed to provide policy decision and policy information mechanisms in fog nodes, locating these functions near end nodes. To evaluate the proposed architecture, an access control engine based on the Attribute-based Access Control was built using the Balana library and simulated using EdgeCloudSim to compare it to the traditional cloud-based architecture. The experiments show that the fog-based architecture provides robust results in terms of reducing latency in making access decisions.

Graph Assisted Resource Allocation for Energy Efficient IoT Computing

  • Mohammed, Alkhathami
    • International Journal of Computer Science & Network Security
    • /
    • 제23권1호
    • /
    • pp.140-146
    • /
    • 2023
  • Resource allocation is one of the top challenges in Internet of Things (IoT) networks. This is due to the scarcity of computing, energy and communication resources in IoT devices. As a result, IoT devices that are not using efficient algorithms for resource allocation may cause applications to fail and devices to get shut down. Owing to this challenge, this paper proposes a novel algorithm for managing computing resources in IoT network. The fog computing devices are placed near the network edge and IoT devices send their large tasks to them for computing. The goal of the algorithm is to conserve energy of both IoT nodes and the fog nodes such that all tasks are computed within a deadline. A bi-partite graph-based algorithm is proposed for stable matching of tasks and fog node computing units. The output of the algorithm is a stable mapping between the IoT tasks and fog computing units. Simulation results are conducted to evaluate the performance of the proposed algorithm which proves the improvement in terms of energy efficiency and task delay.