• Title/Summary/Keyword: focus movement

Search Result 384, Processing Time 0.021 seconds

The Influence of K-Content Experience on National Image, Tourism Attitude and Visit to Intention: Targeting Chinese (K-콘텐츠 경험이 국가이미지와 관광태도 및 방문의도에 미치는 영향 : 중국인을 대상으로)

  • Park, Heejung
    • Journal of Service Research and Studies
    • /
    • v.14 no.1
    • /
    • pp.91-107
    • /
    • 2024
  • This study attempted to empirically verify the possibility of K-content for Chinese people who have recently slowed down due to restriction of movement and political and diplomatic conflicts, although it is a very meaningful market for Korea's content industry and tourism industry. As a result of the study, each item of K-content experience, national image, tourism attitude, and visit intention was derived as one factor, and only the national image factor was derived as two factors: 'functional image' and 'cultural image'. As a result of examining the influence relationship between them established based on previous studies focusing on the derived factors, all five research hypotheses were adopted. K-content experience was found to have a significant influence on both factors of the national image. It was found that it had a greater influence on cultural image factors than functional image factors, cultural image factors were found to have a greater influence on tourism attitudes, K-content experiences had a significant effect on tourism attitudes, and tourism attitudes had a significant effect on visit intentions. Based on the results of this study, it was once again confirmed that the national image even comtually bees an important factor for linking to practical tourism behavior, and in this respect, "culture" is an important key factor that can lead to practical tourism and visits. Previous national images indicate that if the functional aspect of the country was more emphasized, it is now necessary to focus more on the importance of culture than on the functional aspect. As the K-content experience has a significant effect on tourism attitude, it can have a positive effect on the formation of a positive tourism attitude that can lead to actual tourism behavior, so various efforts will be needed to form an active tourism attitude using K-content in the future. As the content and target scope of K-content are expanded and diversified, specific strategies for each sub-market using cultural contents in various fields should be established and implemented.

Visualizing the Results of Opinion Mining from Social Media Contents: Case Study of a Noodle Company (소셜미디어 콘텐츠의 오피니언 마이닝결과 시각화: N라면 사례 분석 연구)

  • Kim, Yoosin;Kwon, Do Young;Jeong, Seung Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.89-105
    • /
    • 2014
  • After emergence of Internet, social media with highly interactive Web 2.0 applications has provided very user friendly means for consumers and companies to communicate with each other. Users have routinely published contents involving their opinions and interests in social media such as blogs, forums, chatting rooms, and discussion boards, and the contents are released real-time in the Internet. For that reason, many researchers and marketers regard social media contents as the source of information for business analytics to develop business insights, and many studies have reported results on mining business intelligence from Social media content. In particular, opinion mining and sentiment analysis, as a technique to extract, classify, understand, and assess the opinions implicit in text contents, are frequently applied into social media content analysis because it emphasizes determining sentiment polarity and extracting authors' opinions. A number of frameworks, methods, techniques and tools have been presented by these researchers. However, we have found some weaknesses from their methods which are often technically complicated and are not sufficiently user-friendly for helping business decisions and planning. In this study, we attempted to formulate a more comprehensive and practical approach to conduct opinion mining with visual deliverables. First, we described the entire cycle of practical opinion mining using Social media content from the initial data gathering stage to the final presentation session. Our proposed approach to opinion mining consists of four phases: collecting, qualifying, analyzing, and visualizing. In the first phase, analysts have to choose target social media. Each target media requires different ways for analysts to gain access. There are open-API, searching tools, DB2DB interface, purchasing contents, and so son. Second phase is pre-processing to generate useful materials for meaningful analysis. If we do not remove garbage data, results of social media analysis will not provide meaningful and useful business insights. To clean social media data, natural language processing techniques should be applied. The next step is the opinion mining phase where the cleansed social media content set is to be analyzed. The qualified data set includes not only user-generated contents but also content identification information such as creation date, author name, user id, content id, hit counts, review or reply, favorite, etc. Depending on the purpose of the analysis, researchers or data analysts can select a suitable mining tool. Topic extraction and buzz analysis are usually related to market trends analysis, while sentiment analysis is utilized to conduct reputation analysis. There are also various applications, such as stock prediction, product recommendation, sales forecasting, and so on. The last phase is visualization and presentation of analysis results. The major focus and purpose of this phase are to explain results of analysis and help users to comprehend its meaning. Therefore, to the extent possible, deliverables from this phase should be made simple, clear and easy to understand, rather than complex and flashy. To illustrate our approach, we conducted a case study on a leading Korean instant noodle company. We targeted the leading company, NS Food, with 66.5% of market share; the firm has kept No. 1 position in the Korean "Ramen" business for several decades. We collected a total of 11,869 pieces of contents including blogs, forum contents and news articles. After collecting social media content data, we generated instant noodle business specific language resources for data manipulation and analysis using natural language processing. In addition, we tried to classify contents in more detail categories such as marketing features, environment, reputation, etc. In those phase, we used free ware software programs such as TM, KoNLP, ggplot2 and plyr packages in R project. As the result, we presented several useful visualization outputs like domain specific lexicons, volume and sentiment graphs, topic word cloud, heat maps, valence tree map, and other visualized images to provide vivid, full-colored examples using open library software packages of the R project. Business actors can quickly detect areas by a swift glance that are weak, strong, positive, negative, quiet or loud. Heat map is able to explain movement of sentiment or volume in categories and time matrix which shows density of color on time periods. Valence tree map, one of the most comprehensive and holistic visualization models, should be very helpful for analysts and decision makers to quickly understand the "big picture" business situation with a hierarchical structure since tree-map can present buzz volume and sentiment with a visualized result in a certain period. This case study offers real-world business insights from market sensing which would demonstrate to practical-minded business users how they can use these types of results for timely decision making in response to on-going changes in the market. We believe our approach can provide practical and reliable guide to opinion mining with visualized results that are immediately useful, not just in food industry but in other industries as well.

The Research on Online Game Hedonic Experience - Focusing on Moderate Effect of Perceived Complexity - (온라인 게임에서의 쾌락적 경험에 관한 연구 - 지각된 복잡성의 조절효과를 중심으로 -)

  • Lee, Jong-Ho;Jung, Yun-Hee
    • Journal of Global Scholars of Marketing Science
    • /
    • v.18 no.2
    • /
    • pp.147-187
    • /
    • 2008
  • Online game researchers focus on the flow and factors influencing flow. Flow is conceptualized as an optimal experience state and useful explaining game experience in online. Many game studies focused on the customer loyalty and flow in playing online game, In showing specific game experience, however, it doesn't examine multidimensional experience process. Flow is not construct which show absorbing process, but construct which show absorbing result. Hence, Flow is not adequate to examine multidimensional experience of games. Online game is included in hedonic consumption. Hedonic consumption is a relatively new field of study in consumer research and it explores the consumption experience as a experiential view(Hirschman and Holbrook 1982). Hedonic consumption explores the consumption experience not as an information processing event but from a phenomenological of experiential view, which is a primarily subjective state. It includes various playful leisure activities, sensory pleasures, daydreams, esthetic enjoyment, and emotional responses. In online game experience, therefore, it is right to access through a experiential view of hedonic consumption. The objective of this paper was to make up for lacks in our understanding of online game experience by developing a framework for better insight into the hedonic experience of online game. We developed this framework by integrating and extending existing research in marketing, online game and hedonic responses. We then discussed several expectations for this framework. We concluded by discussing the results of this study, providing general recommendation and directions for future research. In hedonic response research, Lacher's research(1994)and Jongho lee and Yunhee Jung' research (2005;2006) has served as a fundamental starting point of our research. A common element in this extended research is the repeated identification of the four hedonic responses: sensory response, imaginal response, emotional response, analytic response. The validity of these four constructs finds in research of music(Lacher 1994) and movie(Jongho lee and Yunhee Jung' research 2005;2006). But, previous research on hedonic response didn't show that constructs of hedonic response have cause-effect relation. Also, although hedonic response enable to different by stimulus properties. effects of stimulus properties is not showed. To fill this gap, while largely based on Lacher(1994)' research and Jongho Lee and Yunhee Jung(2005, 2006)' research, we made several important adaptation with the primary goal of bringing the model into online game and compensating lacks of previous research. We maintained the same construct proposed by Lacher et al.(1994), with four constructs of hedonic response:sensory response, imaginal response, emotional response, analytical response. In this study, the sensory response is typified by some physical movement(Yingling 1962), the imaginal response is typified by images, memories, or situations that game evokes(Myers 1914), and the emotional response represents the feelings one experiences when playing game, such as pleasure, arousal, dominance, finally, the analytical response is that game player engaged in cognition seeking while playing game(Myers 1912). However, this paper has several important differences. We attempted to suggest multi-dimensional experience process in online game and cause-effect relation among hedonic responses. Also, We investigated moderate effects of perceived complexity. Previous studies about hedonic responses didn't show influences of stimulus properties. According to Berlyne's theory(1960, 1974) of aesthetic response, perceived complexity is a important construct because it effects pleasure. Pleasure in response to an object will increase with increased complexity, to an optimal level. After that, with increased complexity, pleasure begins with a linearly increasing line for complexity. Therefore, We expected this perceived complexity will influence hedonic response in game experience. We discussed the rationale for these suggested changes, the assumptions of the resulting framework, and developed some expectations based on its application in Online game context. In the first stage of methodology, questions were developed to measure the constructs. We constructed a survey measuring our theoretical constructs based on a combination of sources, including Yingling(1962), Hargreaves(1962), Lacher (1994), Jongho Lee and Yunhee Jung(2005, 2006), Mehrabian and Russell(1974), Pucely et al(1987). Based on comments received in the pretest, we made several revisions to arrive at our final survey. We investigated the proposed framework through a convenience sample, where participation in a self-report survey was solicited from various respondents having different knowledges. All respondents participated to different degrees, in these habitually practiced activities and received no compensation for their participation. Questionnaires were distributed to graduates and we used 381 completed questionnaires to analysis. The sample consisted of more men(n=225) than women(n=156). In measure, the study used multi-item scales based previous study. We analyze the data using structural equation modeling(LISREL-VIII; Joreskog and Sorbom 1993). First, we used the entire sample(n=381) to refine the measures and test their convergent and discriminant validity. The evidence from both the factor analysis and the analysis of reliability provides support that the scales exhibit internal consistency and construct validity. Second, we test the hypothesized structural model. And, we divided the sample into two different complexity group and analyze the hypothesized structural model of each group. The analysis suggest that hedonic response plays different roles from hypothesized in our study. The results indicate that hedonic response-sensory response, imaginal response, emotional response, analytical response- are related positively to respondents' level of game satisfaction. And game satisfaction is related to higher levels of game loyalty. Additionally, we found that perceived complexity is important to online game experience. Our results suggest that importance of each hedonic response different by perceived game complexity. Understanding the role of perceived complexity in hedonic response enables to have a better understanding of underlying mechanisms at game experience. If game has high complexity, analytical response become important response. So game producers or marketers have to consider more cognitive stimulus. Controversy, if game has low complexity, sensorial response respectively become important. Finally, we discussed several limitations of our study and suggested directions for future research. we concluded with a discussion of managerial implications. Our study provides managers with a basis for game strategies.

  • PDF

A Deep Learning Based Approach to Recognizing Accompanying Status of Smartphone Users Using Multimodal Data (스마트폰 다종 데이터를 활용한 딥러닝 기반의 사용자 동행 상태 인식)

  • Kim, Kilho;Choi, Sangwoo;Chae, Moon-jung;Park, Heewoong;Lee, Jaehong;Park, Jonghun
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.163-177
    • /
    • 2019
  • As smartphones are getting widely used, human activity recognition (HAR) tasks for recognizing personal activities of smartphone users with multimodal data have been actively studied recently. The research area is expanding from the recognition of the simple body movement of an individual user to the recognition of low-level behavior and high-level behavior. However, HAR tasks for recognizing interaction behavior with other people, such as whether the user is accompanying or communicating with someone else, have gotten less attention so far. And previous research for recognizing interaction behavior has usually depended on audio, Bluetooth, and Wi-Fi sensors, which are vulnerable to privacy issues and require much time to collect enough data. Whereas physical sensors including accelerometer, magnetic field and gyroscope sensors are less vulnerable to privacy issues and can collect a large amount of data within a short time. In this paper, a method for detecting accompanying status based on deep learning model by only using multimodal physical sensor data, such as an accelerometer, magnetic field and gyroscope, was proposed. The accompanying status was defined as a redefinition of a part of the user interaction behavior, including whether the user is accompanying with an acquaintance at a close distance and the user is actively communicating with the acquaintance. A framework based on convolutional neural networks (CNN) and long short-term memory (LSTM) recurrent networks for classifying accompanying and conversation was proposed. First, a data preprocessing method which consists of time synchronization of multimodal data from different physical sensors, data normalization and sequence data generation was introduced. We applied the nearest interpolation to synchronize the time of collected data from different sensors. Normalization was performed for each x, y, z axis value of the sensor data, and the sequence data was generated according to the sliding window method. Then, the sequence data became the input for CNN, where feature maps representing local dependencies of the original sequence are extracted. The CNN consisted of 3 convolutional layers and did not have a pooling layer to maintain the temporal information of the sequence data. Next, LSTM recurrent networks received the feature maps, learned long-term dependencies from them and extracted features. The LSTM recurrent networks consisted of two layers, each with 128 cells. Finally, the extracted features were used for classification by softmax classifier. The loss function of the model was cross entropy function and the weights of the model were randomly initialized on a normal distribution with an average of 0 and a standard deviation of 0.1. The model was trained using adaptive moment estimation (ADAM) optimization algorithm and the mini batch size was set to 128. We applied dropout to input values of the LSTM recurrent networks to prevent overfitting. The initial learning rate was set to 0.001, and it decreased exponentially by 0.99 at the end of each epoch training. An Android smartphone application was developed and released to collect data. We collected smartphone data for a total of 18 subjects. Using the data, the model classified accompanying and conversation by 98.74% and 98.83% accuracy each. Both the F1 score and accuracy of the model were higher than the F1 score and accuracy of the majority vote classifier, support vector machine, and deep recurrent neural network. In the future research, we will focus on more rigorous multimodal sensor data synchronization methods that minimize the time stamp differences. In addition, we will further study transfer learning method that enables transfer of trained models tailored to the training data to the evaluation data that follows a different distribution. It is expected that a model capable of exhibiting robust recognition performance against changes in data that is not considered in the model learning stage will be obtained.