• 제목/요약/키워드: focal plane array

검색결과 83건 처리시간 0.026초

A NEXT GENERATION MULTI-BEAM FOCAL PLANE ARRAY RECEIVER OF TRAO FOR 86-115 GHZ BAND

  • Chung Moon-Hee;Khaikin Vladimir B.;Kim Hyo-Ryoung;Lee Chang-Hoon;Kim Kwang-Dong;Park Ki-Won
    • Journal of Astronomy and Space Sciences
    • /
    • 제23권1호
    • /
    • pp.19-28
    • /
    • 2006
  • The noise temperature of existing millimeter-wave receivers is already within two or three times quantum noise limit. One of practical ways to increase the observation speed of single dish radio telescope without longer integration time is use of multi-beam focal plane array receiver as demonstrated in several large single dish radio telescopes. In this context the TRAO (Taeduk Radio Astronomy Observatory), which operates a 143n Cassegrain radio telescope, is planning to develop a 4 x 4 beams focal plane array SIS receiver system for 86-115 GHz band. Even though millimeter-wave HEMT LNA-based receivers approach the noise temperature comparable to the SIS receiver at W-band, it is believed that the receiver based on SIS mixer seems to offer a bit more advantages. The critical part of the multi-beam array receiver will be sideband separating SIS mixers. Employing such a type of SIS mixer makes it possible to simplify the quasi-optics of receiver. Otherwise, an SSB filter should be used in front of the mixer or some sophisticated post-processing of observation data is needed. In this paper we will present a preliminary design concept and components needed for the development of a new 3 mm band multi-beam focal plane array receiver.

CTIA 바이어스 상쇄회로를 갖는 초점면 배열에서 마이크로 볼로미터의 온도변화 해석 (Analyses of temperature change of a u-bolometer in Focal Plane Array with CTIA bias cancellation circuit)

  • 박승만
    • 전기학회논문지
    • /
    • 제60권12호
    • /
    • pp.2311-2317
    • /
    • 2011
  • In this paper, we study the temperature change of a ${\mu}$-bolometer focal plane array with a capacitive transimpedance amplifier bias cancellation circuit. Thermal analysis is essential to understand the performance of a ${\mu}$-bolometer focal plane array, and to improve the temperature stability of a focal plane array characteristics. In this study, the thermal analyses of a ${\mu}$-bolometer and its two reference detectors are carried out as a function of time. The analyses are done with the $30{\mu}m$ pitch $320{\times}240$ focal plane array operating of 60 Hz frame rate and having a columnwise readout. From the results, the temperature increase of a ${\mu}$-bolometer in FPA by an incident IR is estimated as $0.689^{\circ}C$, while the temperature increase by a pulsed bias as $7.1^{\circ}C$, which is about 10 times larger than by IR. The temperature increase of a reference detector by a train of bias pulses may be increased much higher than that of an active ${\mu}$-bolometer. The suppression of temperature increase in a reference bolometer can be done by increasing the thermal conductivity of the reference bolometer, in which the selection of thermal conductivity also determines the range of CTIA output voltage.

Performance and functionality of SRI detector array and focal plane electronics

  • Kim, Young-Sun;Kong, Jong-Pil;Heo, Haeng-Pal;Park, Jong-Euk;Chang, Young-Jun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.804-807
    • /
    • 2006
  • The SRI(Super Resolution Imager) with 800mm aperture primary mirror is the ground development model of the high resolution satellite camera. The SRI focal plane electronics including detector array generates the data for high-resolution images by converting incoming light into digital stream of pixel data. Since the focal plane including a detector is the basic building block of the camera system, the main system performances is directly determined by its performance. This paper measures the SRI focal plane electronics’ performance such as the dark signal, the dark signal noise, the linearity, the PRNU(Photo Response Non-Uniformity), the SNR(Signal to Noise Ratio) and the sensor saturation capability. In addition, this paper verifies the various functionalities of the SRI focal plane electronics. The electrical test equipment with the specialized software and the optical test equipments such as the integrating sphere, the rotation stage and the target are implemented and used to verify these functionalities and performances.

  • PDF

초점면 배열 방식의 열상카메라 시스템의 구현 (Implementation of a Thermal Imaging System with Focal Plane Array Typed Sensor)

  • 박세화;원동혁;오세중;윤대섭
    • 제어로봇시스템학회논문지
    • /
    • 제6권5호
    • /
    • pp.396-403
    • /
    • 2000
  • A thermal imaging system is implemented for the measurement and the analysis of the thermal distribution of the target objects. The main part of the system is a thermal camera in which a focal plane array typed sensor is introduced. The sensor detects the mid-range infrared spectrum of target objects and then it outputs a generic video signal which should be processed to form a frame thermal image. Here, a digital signal processor(DSP) is applied for the high speed processing of the sensor signals. The DSP controls analog-to-digital converter, performs correction algorithms and outputs the frame thermal data to frame buffers. With the frame buffers can be generated a NTSC signal and transferred the frame data to personal computer(PC) for the analysis and a monitoring of the thermal scenes. By performing the signal processing functions in the DSP the overall system achieves a simple configuration. Several experimental results indicate the performance of the overall system.

  • PDF

Infrared Focal Plane Array 용 MEMS 구조체 개발 (Development of a MEMS Structure for an Infrared Focal Plane Array)

  • 조성목;양우석;류호준;전상훈;유병곤;최창억
    • 전기학회논문지
    • /
    • 제56권8호
    • /
    • pp.1461-1465
    • /
    • 2007
  • A micromachined sensor part for an infrared focal plane array has been designed and fabricated. Amorphous silicon was adapted as a sensing material, and silicon nitride was used as a membrane material. To get a good efficiency of infrared absorption, the sensor was made as a ${\lambda}/4$ cavity structure. All the processes were done in $0.5\;{\mu}m$ iMEMS fab. in the Electronics and Telecommunication Research Institute (ETRI). The processed MEMS sensor structure had a small membrane deflection less than $0.3\;{\mu}m$. This excellent deflection property can be attributed to the rigorous balancing of the stresses of individual layers. The efficiency of infrared absorption was more than 75% in the wavelength range $8\;-\;14\;{\mu}m$.

디지털 입자 홀로그래피에서 입자의 초점면 결정에 관한 연구 (A Study on Determination of the Focal Plane of Particle in Digital Particle Holography)

  • 양얀;강보선
    • 대한기계학회논문집B
    • /
    • 제32권5호
    • /
    • pp.374-381
    • /
    • 2008
  • The correlation coefficient method, which was proposed by our research group, is applied to digital particle holography to locate the focal plane of particles. It uses the fact that the correlation coefficient is maximum at the focal plane. The factors influencing this method are discussed with a numerical simulation of holograms. For real holograms, the Wiener filter was proposed to process both recorded holograms and reconstructed images. The application results using the dot array target showed that the Wiener filter is a very effective tool for processing holography-related images. The effects of the dot size and the object distance on the errors in the determination of the focal plane by the correlation coefficient method were investigated by using the calibration target.

segmented Focal Plane Array를 이용한 개선된 레티클 탐색기 (An Improved Reticle Seeker Using the Segmented Forcal Plane Array)

  • 홍현기;한성현;최종수
    • 한국통신학회논문지
    • /
    • 제21권10호
    • /
    • pp.2670-2678
    • /
    • 1996
  • Reticle seekers temporally modulate target location onto the incoming spatial signal. When large or multiple targets are present in the FOV, however, it is hard to precisely modulate the incoming target signal by the relicle. To solve this loss of modulatoin depth problem, we present an improved retical seeker using the segmented focal plane array(FPA). The new reticle system uses the normalized difference as well as the modulated signal of each detector output in the segmented FPA. In simulation, we have ascertained the proposed system can make an effective analysis and tracking for multiple or large targets.

  • PDF

초점면 배열 방식 열상 카메라 시스템의 화질 개선 연구 (A Study on the Improvement of Image Quality for a Thermal Imaging System with focal Plane Array Typed Sensor)

  • 박세화
    • 한국산학기술학회논문지
    • /
    • 제1권2호
    • /
    • pp.27-31
    • /
    • 2000
  • 대상 물체의 온도분포를 해석하고 계측하기 위해 열상 장비가 구현된다. 시스템의 주요한 부분은 초점면 배열 형태의 센서가 적용된 열상 카메라이다. 적용된 열상 센서는 중파장 적외선 영역의 신호를 검출하며 열상을 형성하기 위한 기본 신호를 출력한다. DSP가 활용되어 센서 신호처리를 통해 열상을 구성하고 NTSC 신호 및 디지털 신호 출력을 한다. 열상의 화질을 개선하기 위해 이점 교정법을 적용한다. 이는 낮은 온도와 높은 온도를 기준으로 하여 초점면 배열 센서 화소 신호의 공간적인 비균일함을 교정하는 것으로서 실험 결과를 통해 열상의 화질이 개선됨을 보인다.

  • PDF

Korean ALMA Near-term Technical Activities: Development Plan of Focal Plane Array for ASTE

  • Lee, Jung-Won;Kim, Jongsoo;Lee, Chang-Won;Je, Do-Heung;Kang, Yong-Woo;Lee, Bangwon
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.116.2-116.2
    • /
    • 2014
  • As Korean engineering contribution to ALMA enhancement, development of focal plane arrays(FPAs) for the total power array in ALMA compact array has been projected mainly to increase mapping speed in interferometric multi-pointing observation(mosaicking). To tackle engineering issues expected in order to be compatible with the existing ALMA receivers, we plan to develop a prototype 300-500 GHz heterodyne FPA system including a software spectrometer using GPU clusters for ASTE(Atacama Submillimeter Telescope Experiment) telescope by 2017.

  • PDF

Status of ASTE Focal Plane Array Development

  • Lee, Jung-Won;Je, Do-Heung;Lee, Bangwon;Kang, Hyunwoo;Wagner, Jan;Kim, Jongsoo;Han, Seog-Tae;Asayama, Shin'ichiro;Kojima, Takafumi;Gonzalez, Alvaro;Kroug, Matthias;Shan, Wenrei;Iguchi, Satoru;Iono, Daisuke
    • 천문학회보
    • /
    • 제41권2호
    • /
    • pp.59.2-59.2
    • /
    • 2016
  • As an enhancement to increase mapping speed of the current ALMA TP array, development of a focal plane array system working at ultra wide frequency range of 275-500 GHz with GPU-based software spectrometers has been carried out since 2015. Major progresses on such component development as wideband DSB mixers, a profiled corrugated horn, receiver optics, LO system and GPU-based spectrometer are reviewed with brief introduction to implication of ALMA 2030 for technical implementation.

  • PDF