• Title/Summary/Keyword: foaming ratio

Search Result 119, Processing Time 0.024 seconds

Mechanical Performance Evaluation of Cement Paste with Foaming Agent using FEM Analysis Based on Picture Image (화상 이미지 기반 FEM 해석을 이용한 기포제 혼입 시멘트 페이스트의 역학 성능 평가)

  • Kim, Bo-Seok;Shin, Jun-Ho;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.1
    • /
    • pp.35-43
    • /
    • 2016
  • Concrete is a representative heterogeneous material and mechanical properties of concrete are influenced by various factors. Due to the fact that pores in concrete affect determining compressive strength of concrete, studies which deal with distribution and magnitudes of pores are very important. That way, studies using picture imaging have been emerged. Studies on mechanical performance evaluation of structural lightweight foamed concrete and FEM analysis based on picture image are inadequate because lightweight foamed concrete has been researched for only non-structural. Therefore, in this study, cement paste with foaming agent to evaluate mechanical performance is made, FEM analysis with picture image is conducted and young's modulus of experiment and analysis are compared. In this study, dosage of foaming agent is determined 7 level to check pore distribution and water-binder ratio is determined 20% to progress research about structural light weight foamed concrete. Weight of unit volume is minimum at 0.8% of foaming agent dosage. However, weight of unit volume is increased over 0.8% of foaming agent dosage because of interconnection with independent pores. For FEM analysis, cement paste is photographed to use image analyzer(HF-MA C01). Consequently, the fact that Young's Modulus of experiment and FEM analysis are same is drawn by using OOF(Object Oriented Finite elements).

Effects of Viscosity Control by Induction Heating on Micro Cell in Forming Process of Foamed Aluminum (알루미늄 발포재의 성형공정에서 유도가열 법에 의한 점도 제어가 미세 기공에 미치는 영향)

  • Jeon, Yong-Pil;Kang, Chung-Gil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.136-144
    • /
    • 2002
  • Melting method has long been considered difficult to realize because of problems such as the low foamability of molten metal, the varying size of cellular structures and solidification shrinkage. The parameters to solve the problem in electric furnace were stirring temperature, stirring velocity, heating velocity and foaming temperature It is important to consider the effects of induction heating, because it brings about the inner flow by the temperature gradient. Aspect ratio also depends on the induction heating. Mechanical properties are dependent on cell sizes and aspect rations. Therefore, this paper presents the effects of these parameters on the cell sizes. For the sake of this, combined stirring process was used to fabricate aluminum foam materials by the above mentioned parameters. Image analysis was performed to calculate the cell sizes, distributions, and aspect ratioes at the cross section of feared aluminum in the direction of height.

Fabrication of Mullite Short Fibers from Coal Fly Ash (석탄회로부터 뮬라이트 단섬유의 제조)

  • Kim, Byung-Moon;Park, Young-Min;Lyu, Seung-Woo;Yoon, Seog-Young;Park, Hong-Chae
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.4 s.287
    • /
    • pp.235-241
    • /
    • 2006
  • Mullite short fibers have been fabricated by adapting the Kneading-Drying-Calcination (KDC) process and characterized. The effect of the addition of foaming agent and calcination temperature on the formation of mullite fibers from coal fly ash, was examined. In the present work, ammonium alum $NH_4Al(SO_4)_2\;12H_2O$ synthesized trom coal fly ash and sodium phosphate $Na_2HPO_4\;2H_2O$ were used as foaming agents. After calcination at $1300^{\circ}C$ for 10 h and then etching with 20% HF solution at $50^{\circ}C$ for 5 h using a microwave heating source, the alumina-deficient $(AI_2O_3/SiO_2$ = 1.13, molar ratio) orthorhombic mullite fibers with a width of ${\sim}0.8mm$ (aspect ratio >30), were prepared from the coal fly ash with $AI_2O_3/SiO_2$ = 0.32, molar ratio by the addition of $NH_4AI(SO_4)_2\;12H_2O$, and with further addition of 2 wt% sodium phosphate. The excessive addition of sodium phosphate rather decreased the formation of mullite fibers, possibly due to the large amount of liquid phase prior to mullitization reaction.

A Study on the Quality and Biological Characteristics of Moss Panel Utilizing Alumina Cement (알루미나 시멘트 활용 이끼 판넬의 품질 및 생물학적 특성에 관한 연구)

  • Choi, Yun-Wang;Oh, Sung-Rok;Kim, Cheol-Gyu;Lee, Jae-Heun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.57-65
    • /
    • 2019
  • In this study, the quality characteristics of the mother material of panel were evaluated for the production of moss panel using alumina cement and biological characteristics and environmental impact characteristics of moss panel were evaluated. The ratio of W/B 10%, Vs/Vm 20% and foaming agent 0.5% were selected as the basic mixing ratio for the mother panel of moss panel through pretest and SAP was added to improve the moisture content of panel. The optimal mixing ratio of SAP was considered to be less than 0.5% considering the quality characteristics. Also, through the use of alumina cement, the pH of the panel could be lowered to 10~11. The panel was able to improve the surface roughness through the foaming agent, and it was confirmed that the SAP had an effect of improving the moisture content of the panel. For the environmental impact characteristics of the moss panel, the moss panel evaluated the carbon dioxide reduction performance and the fine dust cleaning performance.

The Properties of Transmission in the High Foamed Coaxial Cable (고발포 동축케이블의 전송특성)

  • 김성탁;박대희;김용주
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.77-80
    • /
    • 1998
  • Recently, extending the local broadcasting and increasing lots of informations. The low-loss communication cable is required in proportion as frequency .The reason of transportation loss causes to using the high frequencies like hundreds of MHz or decades of GHz. For the low transportation loss. It is required the developing-technology of foaming and the high foamed insulator with the dielectric ratio of the nearest to 1. Therefor, there is the purpose of developing the insulating materials for the low dielectric ratio. Also it is important to measure the attenuation, which is one of the important parameters.sa the evaluation of transportation characteristic with frequency in the communication cable. In this paper,the result showed that the dielectric ratio(1.4) of the nearest to 1 and low attenuation with high frequency were very related to the transportation and reflection characteristics such as propagation velocity (82.27%). Delay time and voltage standing wave ratio(VSWR).

  • PDF

A Study on Sound Absorption Properties of Foamed Concrete with Continuous Voids (연속공극을 갖는 기포콘크리트의 흡음특성에 관한 연구)

  • 이승한;박정준;황보광수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.567-570
    • /
    • 2000
  • This study is designed to manufacture the continuous foamed concrete and the sound absorption characteristics investigation due to continuous voids ratio. According to the results of experiment, it was shown that continuous voids of the foamed concrete has the influence of the amount used of foaming agent, the viscosity and flowability of cement paste, and also is shaped by cohesive power of bubbles. Also the sound absorption ratio of the foamed concrete is subject to increase as the density becomes low by raising the continuous voids ratio. The cement paste with low water-cement ratio and high cement fineness are very effective to prevent weak strength of formed concrete caused by the increase of the porosity.

  • PDF

Engineering Properties of Sound Absorbing Foamed Concrete Using Bottom Ash Depending on Mix Factors (배합요인에 따른 바텀애시 미분말을 사용한 흡음형 기포콘크리트의 공학적 특성)

  • Kim, Jin-Man;Kang, Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.5
    • /
    • pp.63-70
    • /
    • 2009
  • This study is part of an ongoing research project on the development of a sound-absorbing lightweight foamed concrete manufactured by a hydro-thermal reaction between silica and calcium. As the silica source, pulverized bottom ash was used, and as several cementitious powders of ordinary portland cement, alumina cement and calcium hydroxide were used. Manufacture of foamed concrete was accomplished using the pre-foaming method to make a continuous pore system, which is the method of making the foam by using a foaming agent, then making the slurry by mixing the foam, water, and powders. The experiment factors are W/B, foam agent dilution ratio, and foam ratio, and test items are compressive strength, dry density, void ratio, and absorption rate, as evaluated by NRC. The experiment results showed that the sound absorption of lightweight foamed concrete satisfied NRC requirements for the absorbing materials in most of the experiments. It is thus concluded that foam ratio was the most dominant factor, and significantly affected all properties of lightweight foamed concrete in this study. W/B rarely affected total void ratio and continuous void ratio as well as compressive strength, and dry density and foam agent dilution ratio also had little effect onalmost all properties. The analysis of the correlation between NRC, absorption time, continuous void ratio, and absorption time showed that the interrelationship of the continuous void ratio was high.

A Physical Properties of Lightweight Foamed Concrete According to Lightweight Aggregate Types and Foaming agent Types (경량골재와 기포제 종류에 따른 경량기포 콘크리트의 물리적 특성)

  • Kim, Ha-Seog;Lee, Sea-Hyun;Sun, Jung-Soo;Kim, Jin-Man
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.435-444
    • /
    • 2016
  • In Korea, approximately 48% of all households live in apartments, which are a form of multi-unit dwellings, and this figure increases up to 58%, when row houses and multiplex houses are included. As such, majority of the population reside in multi-unit dwellings where they are exposed to the problem of floor impact noise that can cause disputes and conflicts. Accordingly, this study was conducted to manufacture a high-weight, high-stiffness foamed concrete in order to develop a technology to reduce the floor impact noise. For the purpose of deriving the optimum mixing ratio for the foamed concrete that best reduces the floor impact noise, the amounts of the foaming agent, lightweight aggregate and binder were varied accordingly. Also, the target characteristics of the concrete to be developed included density of over $0.7t/m^3$, compressive strength of over $2.0N/mm^2$ and thermal conductivity of under 0.19 W/mK. The results of the experiment showed that the fluidity was very excellent at over 190 mm, regardless of the type and input amount of foaming agent and lightweight aggregate. The density and compressive strength measurements showed that the target density and compressive strength were satisfied in the specimen with 50% foam mixing ratio for foamed concrete and in all of the mixtures for the lightweight aggregate foamed concrete. In addition, the thermal conductivity measurements showed that the target thermal conductivity was satisfied in all of the foamed concrete specimens, except for VS50, in the 25% replacement ratio case for Type A aggregate, and all of the mixtures for Type B aggregate.

Influence of sugar alcohol and enzyme treatment on the quality characteristics of soy ice cream (당알콜과 효소의 종류가 대두아이스크림의 품질특성에 미치는 영향)

  • 구선희;이숙영
    • Korean journal of food and cookery science
    • /
    • v.16 no.2
    • /
    • pp.151-159
    • /
    • 2000
  • The effects of bromelain and $\alpha$-chymotrypsin treatments on the functional properties(foaming capacity, foaming stability, emulsifying capacity, and emulsifying stability) of soy protein isolate(SPI) and the addition of various sweeteners(sucrose, sorbitol, xylitol) on the quality attributes(viscosity, overrun ratio, melt-down property, and sensory characteristic) of soy ice cream were studied. SPI was more effectively hydrolyzed with $\alpha$-chymotrypsin than bromelain, resulting in a better foaming and emulsifying capacity. Adding xylitol could significantly improve the viscosity, overrun and melt-down property of soy ice creams while the effect was the lowest in the sucrose addition. Bromelain treatment caused a lower apparent viscosity of SPI suspension compared with $\alpha$-chymotrypsin treatment and untreated. The overrun ratios of the soy ice cream prepared with bromelain and $\alpha$-chymotrypsin treated SPI were 18.9∼25.9% and 24.9∼40.3%, respectively as a result of freezing with agitation for 20 min in an ice cream maker. Comparatively, untreated SPI could bring only 15.8∼21.4% overrun ratios after operating for 15 min. The bromelain treatment caused high melt-down tendency of the product while soy ice cream with untreated SPI showed an opposite trend. In sensory characteristics, no significant differences in the strength of beany flavor were noted among the samples. Sweetness, bitter taste, icy feel, and mouthfeel of the product were greatly affected by the enzyme-treatment of SPI. Soy ice cream added with xylitol after $\alpha$-chymotrypsin treatment was the most acceptable among all samples.

  • PDF

Preparation of Highly Porous Poly(d,l-lactic-co-glycolic acid) (PLGA) Microspheres (다공성 PLGA 마이크로입자 제조법의 최적화 연구)

  • Park, Hong-Il;Kim, Huyn-Uk;Lee, Eun-Seong;Lee, Kang-Choon;Youn, Yu-Seok
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.3
    • /
    • pp.167-171
    • /
    • 2009
  • Poly(lactic-co-glycolic acid) (PLGA) microspheres have been a useful tool as a controlled drug delivery system for peptides and proteins. Recently, porous microspheres have gained great attention as inhalation drug delivery system due to their low aerodynamic densities. Here, we report highly porous PLGA microspheres, which were prepared by using a single o/w emulsification/solvent evaporation method. Two types of porogen, i.e., (i) extractable Pluronic F127 and (ii) gas foaming salt of ammonium bicarbonate, were used to induce pores on the surface of PLGA microspheres. The respective preparation conditions on dp/cp ratio and porogen concentration were determined by the previous preliminary experiments, and other preparation factors were further optimized on the basis of PLGA Mw and porogen type. The morphological features examined by scanning electron microscope (SEM) show these porous microspheres have highly porous surface structure with a diameter range of 20${\sim}$30 ${\mu}$m. These highly porous PLGA microspheres, which have much lower density, would be a practical aerosol system for pulmonary drug delivery.