• Title/Summary/Keyword: foaming capacity

Search Result 78, Processing Time 0.024 seconds

The Study on Emulsifying and Foaming Properties of Buckwheat Protein Isolate (분리 메밀 단백질의 유화 및 기포특성에 관한 연구)

  • 손경희;최희선
    • Korean journal of food and cookery science
    • /
    • v.9 no.1
    • /
    • pp.43-51
    • /
    • 1993
  • Buckwheat protein isolate was tested for the effects of pH, addition of sodium chloride and heat treatment on solubility, emulsion capacities, emulsion stability, surface hydrophobicity, foam capacities and foam stability. The solubility of buckwheat protein isolate was affected by pH and showed the lowest value at pH 4.5, the isoelectric point of buckwheat protein isolate. The solubility significantly as the pH value reached closer to either ends of the pH, i.e., pH 1.0 and 11.0. The effects of NaCl concentration on solubility were as follows; at pH 2.0, the solubility significantly decreased when NaCl was added; at pH 4.5, it increased above 0.6 M; at pH 7.0 it increased; and at pH 9.0 it decreased. The solubility increased above $80^{\circ}C$, at all pH ranges. The emulsion capacity was the lowest at pH 4.5. It significantly increased as the pH approached higher acidic or alkalic regions. At pH 2.0, when NaCl was added, the emulsion capacity decreased, but it increased at pH 4.5 and showed the maximum value at pH 7.0 and 9.0 with 0.6 M and 0.8 M NaCl concentrations. Upon heating, the emulsion capacity decreased at acidic pH's but was maximised at pH 7.0 and 9.0 on $60^{\circ}C$ heat treatment. The emulsion stability was the lowest at pH 4.5 but increased with heat treatment. At acidic pH, the emulsion stability increased with the increase in NaCl concentration but decreased at pH 7.0 and 9.0. Generally, at other pH ranges, the emulsion stability was decreased with increased heating temperature. The surface hydrophobicity showed the highest value at pH 2.0 and the lowest value at pH 11.0. As NaCl concentrationed, the surface hydrophobicity decreased at acidic pH. The NaCl concentration had no significant effects on surface hydrophobicity at pH 7.0, 9.0 except for the highest value observed at 0.8 M and 0.4 M. At all pH ranges, the surface hydrophobicity was increased, when the temperature increased. The foam capacity decreased, with increased in pH value. At acidic pH, the foam capacity was decreased with the increased in NaCl concentration. The highest value was observed upon adding 0.2 M or 0.4 M NaCl at pH 7.0 and 9.0. Heat treatments of $60^{\circ}C$ and $40^{\circ}C$ showed the highest foam capacity values at pH 2.0 and 4.5, respectively. At pH 7.0 and 9.0, the foam capacity decreased with the increased in temperature. The foam stability was not significantly related to different pH values. The addition of 0.4 M NaCl at pH 2.0, 7.0 and 9.0 showed the highest stability and the addition of 1.0 M at pH 4.5 showed the lowest. The higher the heating temperature, the lower the foam stability at pH 2.0 and 9.0. However, the foam stability increased at pH 4.5 and 7.0 before reaching $80^{\circ}C$.

  • PDF

An Experimental Study on the Pore Structure and Thermal Properties of Lightweight Foamed Concrete by Foaming Agent Type (기포제 종류에 따른 경량기포콘크리트의 기포구조 및 열적특성에 관한 실험적 연구)

  • Kim, Jin-Man;Choi, Hun-Gug;Park, Sun-Gyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.4
    • /
    • pp.63-73
    • /
    • 2009
  • Recently, the use of lightweight panels in building structures has been increasing. Of the various lightweight panel types, styrofoam sandwich panels are inexpensive and are excellent in terms of their insulation capacity and their constructability. However, sandwich panels that include organic material are quite vulnerable to fire, and thus can numerous casualties in the event of a fire due to the lack of time to vacate and their emission of poisonous gas. On the other hand, lightweight foamed concrete is excellent, both in terms of its insulation ability and its fire resistance, due to its Inner pores. The properties of lightweight concrete is influenced by foaming agent type. Accordingly, this study investigates the insulation properties by foaming agent type, to evaluate the possibility of using light-weight foamed concrete instead of styrene foam. Our research found thatnon-heating zone temperature of lightweight foamed concrete using AP (Aluminum Powder) and FP (animal protein foaming agent) are lower than that of light-weight foamed concrete using AES (alkyl ether lactic acid ester). Lightweight foamed concrete using AES and FP satisfied fire performance requirements of two hours at a foam ratio 50, 100. Lightweight foamed concrete using AP satisfied fire performance requirements of two hours at AP ratio 0.1, 0.15. The insulation properties were better in closed pore foamed concrete by made AP, FP than with open pore foamed concrete made using AES.

A Comparison Study on Functional Properties of Peanut Protein and Chemically Modified Peanut Protein (분리 땅콩 단백질과 화학적으로 수식화한 단백질간의 식품학적 특성 비교)

  • Sohn, Kyung-Hee;Min, Sung-Hee;Park, Hyun-Kyung;Park, Jin
    • Korean journal of food and cookery science
    • /
    • v.7 no.2
    • /
    • pp.97-104
    • /
    • 1991
  • This study was carried out in order to study the protein functionality such as foaming and emulsifying properties by succinylation of peanut protein isolates. Succinylated and unsuccinylated peanut protein isolate was tested for to find out the effect of pH, heat treatment and sodium chloride concentration on the solubility, foam expansion, foam stability, emulsion capacity and emulsion stability. The results are summarized as follows; 1. Succinylation enhanced the solubility of peanut protein isotate (PPI). The solubility of succinylated PPI markedly increased at pH 4.5. When the protein solutions was heated, the solubility of succinylated PPI greatly increased than PPI at pH 3. With addition of NaCl, solubility of succinylated PPI increased at pH 7 and pH 9. 2. The foam expansion of PPI and succinylated PPI on pH was no difference between both proteins. Addition of NaCl and heat treatment caused steeply increased in foam expansion at pH 3. 3. The foam stability of PPI and succinylated PPI showed the lowest value at pH 4.5. When PPI and succinylated PPI was heated, foam stability of two proteins incensed at pH 3 and showed similar aspects between PPI and succinylated PPI. However, at pH 9 stability of succinylated PPI decreased by heat treatment over $60^{\circ}C$. 4. Emulsion capacity of succinylated PPI on pH was markedly increased and showed the highest value at pH 11. At pH 4.5 which is isoelectric point of PPI, emulsion capacity of PPI by succinylation improved than that of PPI. When succinylated PPI was heated, emulsion capacity was greatly increased at pH 2 and pH 7. With NaCl was added, emulsion capacity of succinylated PPI increased than that of PPI. 5. Emulsion stability of PPI and succinylated PPI was affected by pH and showed its highest value at pH 11. At pH 4.5, emulsion stability of succinylated PPI increased than that of PPI. Addition of NaCl and heat treatment caused slightly increased in emulsion stability of succinylated PPI.

  • PDF

Preparation of Yeast Hydrolysate Enriched in Cyclo-His-Pro (CHP) by Enzymatic Hydrolysis and Evaluation of Its Functionality

  • Lee, Hyun Jung;Son, Heung Soo;Park, Chung;Suh, Hyung Joo
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.4
    • /
    • pp.284-291
    • /
    • 2015
  • In this study, we attempted to enrich cyclo-His-Pro (CHP) using enzymatic hydrolysis of yeast and to evaluate the functionality of yeast hydrolysate (YH)-enriched CHP. Flavourzyme offered a better performance in enhancing CHP content than other proteases. The CHP enrichment conditions were optimized as follows: addition of 1% Flavourzyme, 48-h incubation at 60oC, and pH 6.0. The CHP content significantly increased by 20-fold after ultra-filtration (UF). Maximal CHP translation was obtained after heating for 8 h at 50oC and pH 7.0. YH showed poor foaming capacity between pH 3.0 to 9.0. The emulsifying activities of YHs were slightly higher at near acidic pH. Increase in heating temperature and time resulted in decreased CHP content. The results indicate that YH is more heat stable after UF. Therefore, the CHP in YH after UF can be used as a food additive with physiological CHP activity and high heat stability.

Rheological Properties of Jeung-pyun Prepared with SPI(Soybean Protein Isolates) (분리 대두 단백질 첨가에 의한 증편의 이화학적 특성)

  • Hong, Geum-Ju;Kim, Myung-Hee;Kim, Kang-Sung
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • In this study the rheological properties of Jeung-pyun prepared with soybean protein isolate (SPI) were investigated. SPI Jeung-pyun samples were manufactured with 3% whole protein, 7S protein, or 11S protein (w/w). In terms of moisture content the Jeung-pyun samples prepared with soybean flour had greater moisture contents than the control group. With the addition of SPI water binding capacity solubility and swelling power increased. Dough pH decreased during the fermentation, but increased after steaming and the SPI Jeung-pyun samples presented higher pH levels han the control group. Foaming ability was significantly strong in the 7S, 11S and whole protein groups. The surface structures of the 7S, 11S and whole protein Jeung-pyun samples displayed small uniform pores when examined by SEM. Overall, the results suggest that SPI can contribute to quality improvements in Jeung-pyun through effects on dough fermentation.

  • PDF

Food Functionality of Collagenous Protein Fractions Recovered from Fish Roe by Alkaline Solubilization (어류 알로부터 알칼리 가용화공정을 통해 회수한 Collagenous Protein 획분의 식품 기능특성)

  • Yoon, In Seong;Kim, Jin-Soo;Heu, Min Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.4
    • /
    • pp.351-361
    • /
    • 2018
  • This study investigated the potential of collagenous protein fractions (CPFs) as functional foods. The specific CPFs studied were recovered from the roe of bastard halibut (BH), Paralichthys olivaceus; skipjack tuna (ST), Katsuwonus pelamis; and yellowfin tuna (YT), Thunnus albacares through the alkaline solubilization process at pH 11 and 12. The buffer capacity, water-holding capacity and solubility of CPFs with pH-shift treatment were significantly better at alkaline pH (10-12) than at acidic pH (2.0). At pH-shift treatment (pH 2 and 12), the foaming capacities of CPFs from ST and YT were improved compared to those of controls, but they were unstable compared to BH CPFs. The emulsifying activity index (EAI, $m^2/g$ protein) of CPFs (controls) was 16.0-21.1 for BH, 20.1-23.9 for ST and 9.3-13.7 for YT (P<0.05). CPFs adjusted to pH 12 showed improved EAI and YT CPFs showed significantly greater emulsifying ability than those from BH and ST. CPFs recovered from fish roe are not only protein sources but also have a wide range of food functionalities, confirming the high availability of fish sausage and surimi-based products as protein or reinforcing materials for functional foods and alternative raw materials.

Functional Properties of Silkworm Larvae Protein Concentrate (번데기 농축단백질의 기능성)

  • Park, Geum-Soon;Park, Jyung-Rewng
    • Korean Journal of Food Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.204-209
    • /
    • 1986
  • The functional properties of defatted silkworm larvae flour and protein concentrate have been compared with those of soybean. The protein contents of soybean and silkworm larvae protein concentrate were 70.3% and 84.1%, respectively. The solubility of silkworm larvae protein concentrate was lower than that of soybean protein at various pH tested. However, silkworm larvae protein concentrate showed better fat absorption, poorer water absorption and overall higher bulk density than soybean protein. The silkworm larvae protein concentrate showed higher emulsifying capacity and stability, but showed lower foaming capacity and stability than soybean protein. Silkworm larvae protein concentrate showed highest viscosity among various protein products at all concentrations and reached the highest viscosity at 5${\sim}$7% protein concentration. Therefore, high emulsification properties of silkworm larvae protein concentrate will be a good protein source when it is added to emulsified food.

  • PDF

Technical Functional Properties of Water- and Salt-soluble Proteins Extracted from Edible Insects

  • Kim, Tae-Kyung;Yong, Hae In;Jeong, Chang Hee;Han, Sung Gu;Kim, Young-Boong;Paik, Hyun-Dong;Choi, Yun-Sang
    • Food Science of Animal Resources
    • /
    • v.39 no.4
    • /
    • pp.643-654
    • /
    • 2019
  • The amino acid composition, protein quality, and protein functionality of protein solution extracted from three edible insect species were investigated. We used 0.02% ascorbic acid and 0.58 M saline solution to extract water-soluble and salt-soluble proteins from the three insect species. Extracted protein solutions of Tenebrio molitor (TM), Allomyrina dichotoma (AD), and Protaetia brevitarsis seulensis (PB) were divided into six groups, according to species and solubility: WTM, WAD, WPB (water-soluble), and STM, SAD, and SPB (salt-soluble). Defatted TM had the highest protein content, but its protein solubility was the lowest, for both water and saline solutions. Amino acid composition differed by edible insect species and buffer type; SPB had the highest protein quality, followed by WPB. PB had a higher pH than the other species. Color values also differed among species. SPB had abundant high molecular weight proteins, compared with other treatments; and also had the highest foaming capacity, foam stability, and emulsifying capacity. In conclusion, PB is a good source of functional protein compared with the other studied species. Additionally, protein extraction using saline solution is promising as a useful method for improving edible insect protein functionality.

Effects of High Hydrostatic Pressure on Technical Functional Properties of Edible Insect Protein

  • Kim, Tae-Kyung;Yong, Hae In;Kang, Min-Cheol;Jung, Samooel;Jang, Hae Won;Choi, Yun-Sang
    • Food Science of Animal Resources
    • /
    • v.41 no.2
    • /
    • pp.185-195
    • /
    • 2021
  • The objective of this study was to determine the effects of high pressure to investigate the technical functional properties of the protein solution extracted from an edible insect, Protaetia brevitarsis seulensis. High pressure processing was performed at 0 (control), 100, 200, 300, 400, and 500 MPa at 35℃. The essential amino acid index of the control was lower (p<0.05) than that of the P. brevitarsis seulensis extract treated with 100 MPa. The SDS-PAGE patterns tended to become faint at approximately 75 kDa and thicker at approximately 37 KDa after high pressure treatment. The protein solubility and pH of the protein tended to increase as the hydrostatic pressure levels increased. The instrument color values (redness and yellowness) of the P. brevitarsis seulensis protein treated with high pressure were lower (p<0.05) than those of the control. The forming capacity of the protein solution with P. brevitarsis seulensis treated with high pressure was higher (p<0.05) than that of the control. In conclusion, we confirmed that the technical functional properties of edible insect proteins extracted under high pressure of 200 MPa are improved. Our results indicate that high pressure can improve the technical functional properties of proteins from edible insects.

Studies on the Improvements of Functional Properties of Sardine Protein by Plastein Reaction (Plastein반응을 이용한 정어리 단백질의 기능성 개선에 관한 연구 3. Plastein의 기능성 및 소화율)

  • Kim, Se-Kwon;Kwak, Dong-Chae;Cho, Duck-Jae;Lee, Eung-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.17 no.4
    • /
    • pp.312-319
    • /
    • 1988
  • The functional properties of plasteins have been compared with those of sardine protein concentrate and egg albumin. The solubility of plasteins was higher than that of FPG and the glu-plastein had 84% solubility in the range of pH 3-10. The dispersibility of plasteins was lower than that of egg albumin, however those of plasteins was higher than that of sardine protein concentrate. The water holding capacity of plasteins was higher than that of egg albumin. Lipid absorption of leu-papain plastein was the highest, holding 2.2m119, and that of the other plastein was higher than that of egg albumin. The emulsifying activity of leu-papain plastein was the highest, holding 66.4%, and that of glu-papain plastein was the lowest, holding 51.2%, The emulsifying stability of plasteins was similar to that of the emulsifying activity. The foaming capacitt of leu-papain plastein was the highest, holding 460%, and those of the other plasteins was higher than that of egg albumin. The foaming stability of plasteins was superior to that of egg albumin. The viscosity of plasteins was lower than that of see albumin. The in vitro digestibility of plasteins was 67.6-78.0% range. The digestibility by four pretense were somewhat lower in the glu-papain plastein than in the FPG. The digest of plasteins treated with the microbiol pretense such as molsin and pretense(from Streptomyces griceus), which had a storage broth taste.

  • PDF