• 제목/요약/키워드: foam sandwich

검색결과 128건 처리시간 0.03초

Modelling of aluminium foam sandwich panels

  • D'Alessandro, Vincenzo;Petrone, Giuseppe;De Rosa, Sergio;Franco, Francesco
    • Smart Structures and Systems
    • /
    • 제13권4호
    • /
    • pp.615-636
    • /
    • 2014
  • Aluminium Foam Sandwich (AFS) panels are becoming always more attractive in transportation applications thanks to the excellent combination of mechanical properties, high strength and stiffness, with functional ones, thermo-acoustic isolation and vibration damping. These properties strongly depend on the density of the foam, the morphology of the pores, the type (open or closed cells) and the size of the gas bubbles enclosed in the solid material. In this paper, the vibrational performances of two classes of sandwich panels with an Alulight(R) foam core are studied. Experimental tests, in terms of frequency response function and modal analysis, are performed in order to investigate the effect of different percentage of porosity in the foam, as well as the effect of the random distribution of the gas bubbles. Experimental results are used as a reference for developing numerical models using finite element approach. Firstly, a sensitivity analysis is performed in order to obtain a limit-but-bounded dynamic response, modelling the foam core as a homogeneous one. The experimental-numerical correlation is evaluated in terms of natural frequencies and mode shapes. Afterwards, an update of the previous numerical model is presented, in which the core is not longer modelled as homogeneous. Mass and stiffness are randomly distributed in the core volume, exploring the space of the eigenvectors.

Local buckling behaviour of steel plate elements supported by a plastic foam material

  • Mahendran, M.;Jeevaharan, M.
    • Structural Engineering and Mechanics
    • /
    • 제7권5호
    • /
    • pp.433-445
    • /
    • 1999
  • Sandwich panels comprising steel facings and a polystyrene foam core are increasingly used as roof and wall claddings in buildings in Australia. When they are subjected to loads causing bending and/or axial compression, the steel plate elements of their profiled facing are susceptible to local buckling. However, when compared to panels with no foam core, they demonstrate significantly improved local buckling behaviour because they are supported by foam. In order to quantify such improvements and to validate the use of available design buckling stress formulae, an investigation using finite element analyses and laboratory experiments was carried out on steel plates that are commonly used in Australia of varying yield stress and thickness supported by a polystyrene foam core. This paper presents the details of this investigation, the buckling results and their comparison with available design buckling formulae.

Effect of core shape on debonding failure of composite sandwich panels with foam-filled corrugated core

  • Malekinejadbahabadi, Hossein;Farrokhabadi, Amin;Rahimi, Gholam H;Nazerigivi, Amin
    • Steel and Composite Structures
    • /
    • 제45권3호
    • /
    • pp.467-482
    • /
    • 2022
  • One of the major failure modes in composite sandwich structures is the separation between skins and core. In this study, the effect of employing foam filled composite corrugated core on the skin/core debonding (resistance to separation between skin and core) is investigated both experimentally and numerically. To this aim, triangular corrugated core specimens are manufactured and compared with reference specimens only made of PVC foam core in terms of skin/core debonding under bending loading. The corrugated composite laminates are fabricated using the hand layup method. Also, the Vacuumed Infusion Process (VIP) is employed to join the skins to the core with greater quality. Utilizing an End Notched Shear (ENS) fixture, three point bending tests are performed on the manufactured sandwich composite panels. The results reveal that the resistance to separation capacity and flexural stiffness of sandwich composite has been increased about 170% and 76%, respectively by using a triangular corrugated core. The Cohesive Zone Model (CZM) with appropriate cohesive law in ABAQUS finite element software is used to model the progressive face/core interfaces debonding the difference between experimental and numerical results in predicting the maximum born load before the skin/core separation is about 6 % in simple core specimens and 3% in triangular corrugated core specimens.

샌드위치 패널의 외부 색상과 내부 심재에 따른 이면 온도 변화 (The Back Side Temperature Variation According to Color of Sandwich Panel and Internal Core Material)

  • 박준서;김봉주
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 가을학술발표대회논문집
    • /
    • pp.25-26
    • /
    • 2023
  • The internal core material and external color of a sandwich panel have a significant impact on the performance of the sandwich panel. For use on roofs and walls, the internal core material and external color must be considered. Therefore, the surface and back side temperatures were measured for each exterior color and inner core material type. For the internal core materials, urethane foam and Expanded Poly Styrene(EPS), which are core materials mainly used in sandwich panels, were selected. As colors, black and ivory were selected according to brightness, and a total of five colors were selected: red, blue, and green, which are the three primary colors of light. As a result, there were differences in surface and temperature depending on the external color and type of internal core material. Regardless of the color, the temperature was measured lower for panels with urethane foam than for panels with an internal core of EPS. This is believed to have been influenced by the difference in thermal conductivity of urethane foam being 0.023W/(m·K) and that of EPS being 0.032W/(m·K). In addition, panels with a black exterior color were found to have higher surface and back temperatures than panels of other colors, and ivory-colored panels had lower back temperatures regardless of the core material. This is proportional to the brightness and light-absorbing characteristics.

  • PDF

Numerical investigation on dynamic characteristics of sandwich plates under periodic and thermal loads

  • Mouayed H.Z., Al-Toki;Wael Najm, Abdullah;RidhaA., Ahmed;Nadhim M., Faleh;Raad M., Fenjan
    • Steel and Composite Structures
    • /
    • 제45권6호
    • /
    • pp.831-837
    • /
    • 2022
  • Numerical investigation on dynamic characteristics of sandwich plates under periodic and thermal loads has been presented by assuming that the plate has three layers which are a foam core and two skins. The foam core made of Aluminum has porosities with uniform and graded dispersions. The sandwich plate has been supposed to be affected by periodical compressive loads. Also, temperature variation causes uniform thermal load. The formulation has been established based upon a higher-order plate theory and Ritz method has been used to solve the equations of motion. The stability boundaries have also been obtained performing Bolotin's method. It will be indicated that stability boundaries of the sandwich plate depend on periodical load parameters, porosities, skin thickness and temperature.

A Study on Conceptual Structural Design of Wing for a Small Scale WIG Craft Using Carbon/Epoxy and Foam Sandwich Composite Structure

  • Kong, Chang-Duk;Park, Hyun-Bum;Kang, Kuk-Gin
    • Advanced Composite Materials
    • /
    • 제17권4호
    • /
    • pp.343-358
    • /
    • 2008
  • This present study provides the structural design and analysis of main wing, horizontal tail and control surface of a small scale WIG (Wing-in-Ground Effect) craft which has been developed as a future high speed maritime transportation system of Korea. Weight saving as well as structural stability could be achieved by using the skin.spar.foam sandwich and carbon/epoxy composite material. Through sequential design modifications and numerical structural analysis using commercial FEM code PATRAN/NASTRAN, the final design structural features to meet the final design goal such as the system target weight, structural safety and stability were obtained. In addition, joint structures such as insert bolts for joining the wing with the fuselage and lugs for joining the control surface to the wing were designed by considering easy assembling as well as more than 20 years service life.

Structural Design on Small Scale Sandwich Composite Wind Turbine Blade

  • Seongjin Ahn;Hyunbum Park
    • International Journal of Aerospace System Engineering
    • /
    • 제10권2호
    • /
    • pp.1-4
    • /
    • 2023
  • Even though the recent development trend of wind turbine systems has been focused on larger MW Classes, the small-scale wind turbine system has been continuously developed because it has some advantages due to easy personnel establishment and use with low cost and energy saving effect. This work is to propose a specific structural design and analysis procedure for development of a low noise 500W class small wind turbine system which will be applicable to relatively low wind speed region like Korea. The proposed structural feature has a skin-spar-foam sandwich composite structure with the E-glass/Epoxy face sheets and the Urethane foam core for lightness, structural stability, low manufacturing cost and easy manufacturing process. Moreover this type of structure has good behaviors for reduction of vibration and noise. Structural analysis including load cases, stress, deformation, buckling and vibration was performed using the Finite Element Method. In order to evaluate the designed blade structure the structural tests were done, and their test results were compared with the estimated results.

Strength and buckling of a sandwich beam with thin binding layers between faces and a metal foam core

  • Magnucki, Krzysztof;Jasion, Pawel;Szyc, Waclaw;Smyczynski, Mikolaj Jan
    • Steel and Composite Structures
    • /
    • 제16권3호
    • /
    • pp.325-337
    • /
    • 2014
  • The strength and buckling problem of a five layer sandwich beam under axial compression or bending is presented. Two faces of the beam are thin aluminium sheets and the core is made of aluminium foam. Between the faces and the core there are two thin binding glue layers. In the paper a mathematical model of the field of displacements, which includes a share effect and a bending moment, is presented. The system of partial differential equations of equilibrium for the five layer sandwich beam is derived on the basis of the principle of stationary total potential energy. The equations are analytically solved and the critical load is obtained. For comparison reasons a finite element model of the beam is formulated. For the case of bended beam the static analysis has been performed to obtain the stress distribution across the height of the beam. For the axially compressed beam the buckling analysis was carried out to determine the buckling load and buckling shape. Moreover, experimental investigations are carried out for two beams. The comparison of the results obtained in the analytical and numerical (FEM) analysis is shown in graphs and figures. The main aim of the paper is to present an analytical model of the five layer beam and to compare the results of the theoretical, numerical and experimental analyses.

마이크로팩토리 용 미세방전 공작기계의 고강성/고감쇠 설계 (Design of EDM Machine Tool Structures for Microfactory with High Stiffness and Damping Characteristics)

  • 김주호;장승환
    • 한국공작기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.205-211
    • /
    • 2007
  • In this paper, foam-composite sandwich structures for EDM machine tool components such as column and column block designed by controlling stacking sequences and cross-sectional dimensions of the composite structures. The original column block is a box-shaped structure made of aluminum connecting a column and a Z-stage of the system. This research was focused on the design of efficient column block structure using a foam-composite sandwich structure which have good bending stiffness and damping characteristics to reduce the mass and increase damping ratio of the system. Vibration tests for getting damping ratio with respect to the stacking angle and thickness of the composites were carried out. Finite element analyses for static defection and vibration behaviour were also carried out to find out the appropriate stacking conditions; that is, stacking sequence and rib configuration. From the test and analysis results it was found that composite-foam sandwich structures for the microfactory system can be successful alternatives for high precision machining.

A Study on Mode I Interlaminar Fracture Toughness of Foam Core Sandwich Structures

  • Sohn, Se-Won;Kwon, Dong-Ahn;Hong, Sung-Hee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권3호
    • /
    • pp.47-53
    • /
    • 2001
  • This paper investigates the characteristics of interlaminar fracture toughness of foam core sandwich structures under opening mode by using the double cantilever beam (DCB) specimens which are Carbon/Epoxy and foam core composites. Instead of using a DCB specimen of symmetric geometry, a non-symmetric DCB specimen was used to calculate the interlaminar fracture toughness. Three approaches for calculating the energy release rate(G$\sub$IC/) were used and fracture toughness of foam core sandwich structures made by autoclave, vacuum bagging and hotpress were compared. Experiment, analysis using nonlinear beam bending theory, and numerical work by FEM methods were performed. Bonding surface compensation and equivalent moment of inertia were used to calculate the energy release rate in nonlinear analytical work. Conclusions of experimental, nonlinear analytical and FEM methods were compared. It is, also, shown that the vacuum bagging forming can substitute the method of autoclave without serious loss of Mode I energy release rate(G$\sub$I/).

  • PDF