• Title/Summary/Keyword: foam process

Search Result 334, Processing Time 0.025 seconds

Foams for Aquifer Remediation: Two Flow Regimes and Its Implication to Diversion Process

  • Kam, Seung-Ihl;Jonggeun Choe
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.1
    • /
    • pp.1-11
    • /
    • 2004
  • Foam reduces the mobility of gas phase in porous media to overcome gravity override and to divert acid into desired layers in the petroleum industry and to enhance the efficiency of environmental remediation. Recent experimental studies on foam show that foam exhibits a remarkably different flow rheology depending on the flow regime. This study, for the first time, focuses on the issues of foam diversion process under the conditions relevant to groundwater remediation, combining results from laboratory linear-flow experiments and a simple numerical model with permeability contrasts. Linear flow tests performed at two different permeabilities (k = 9.1 and 30.4 darcy) confirmed that two flow regimes of steady-state strong foams were also observed within the permeability range of shallow geological formations. Foam exhibited a shear-thinning behavior in a low-quality regime and near Newtonian rheology in a high-quality regime. Data taken from linear flow tests were incorporated into a simple numerical model to evaluate the efficiency of foam diversion process in the presence of permeability contrasts. The simple model illustrated that foam in the high-quality regime exhibited a successful diversion but foam in the low-quality regime resulted in anti-diversion, implying that only foam in the high-quality regime would be applicable to the diversion process. Sensitivity study proved that the success of diversion process using foam in the high-quality regime was primarily controlled by the limiting capillary pressures (${P_c}{^*}$) of the two layers of interest. Limitations and implications are also discussed and included.

Refinement of Projection Map Based on Artificial Neural Networks to Represent Noise-Reduced Foam Effects (노이즈가 완화된 거품 효과를 표현하기 위한 인공신경망 기반의 투영맵 정제)

  • Kim, Jong-Hyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.27 no.4
    • /
    • pp.11-24
    • /
    • 2021
  • In this paper, we propose an artificial neural network framework that can represent the foam effects expressed in liquid simulation in detail without noise. The position and advection of foam particles are calculated using the existing screen projection method, and the noise problem that appears in this process is solved through an proposed artificial neural network. The important thing in the screen projection approach is the projection map, but noise occurs in the projection map in the process of projecting momentum into the discretized screen space, and we efficiently solve this problem by using an artificial neural network-based denoising network. When the foam generating area is selected through the projection map, 2D is inversely transformed into 3D space to generate foam particles. We solve the existing denoising network problem in which small-scaled foam particles disappear. In addition, by integrating the proposed algorithm with the screen-space projection framework, all the advantages of this approach can be accommodated. As a result, it shows through various experiments whether it is possible to stably represent not only the clean foam effects but also the foam particles lost due to the denoising process.

Drying Characteristics of Mango Powder according to Foam-Mat Drying Conditions (포말건조 조건에 따른 애플망고 분말의 건조 가공 특성)

  • Hyeonbin Oh;Chae-wan Baek;Taeho Kwak;Hyun-Wook Jang;Ha-Yun Kim;Yong Sik Cho
    • The Korean Journal of Food And Nutrition
    • /
    • v.36 no.6
    • /
    • pp.496-505
    • /
    • 2023
  • This study explored a method to enhance the drying process usability of local mangoes by producing foam-mat dried powder under varying drying temperatures (50, 60, 70℃) and foam thicknesses (3, 6, 9 mm). The drying process period ranged from 60 to 390 minutes based on the set conditions, with higher temperatures and thinner foams accelerating drying. Powder chromaticity (L*,(L*, a*, and b*) demonstrated a declining trend with increasing drying temperature and foam thickness, exhibiting notable variance in chroma values. The water absorption index varied significantly, between 3.08 to 4.24, under different drying conditions, although the water solubility index remained consistent across foam-dried samples. Powder moisture content ranged from 2.53% to 3.83%, with hygroscopicity escalating with temperature and foam thickness. Vitamin C structure was compromised during the hot air drying process, especially at temperatures above 60℃. Electronic nose analysis distinguished foam-dried powder from freeze-dried powder; however, a thicker foam yielded a scent profile closer to that of freeze-dried powder. The findings provide fundamental data on mango foam drying, which is expected to improve processing and storage tech for local mangoes.

Laser Processing Characteristic of Polystyrene Foam Pattern (폴리스티렌 폼 패턴의 레이저 가공 특성)

  • Kim, Jae-Do;Kang, Kyoung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.772-778
    • /
    • 2003
  • Polystyrene foam is easily melted and vapoured by heat, has a proper quality in the pattern manufacturing and has a low price. The objective of this study is to develop a rapid prototyping method fur polystyrene foam pattern manufacuring to use the eliminative pattern casting (EPC). Applying fur the rapid prototyping concept reversely, the unnecessary part of section is vapored away by heat source of laser beam. In order to examine the applicability between laser beam process and polystyrene foam material, the basic experiments such as hole, line, plane and contour process are carried out. With these results, various three-dimensional shape patterns are made and this rapid prototyping tool for polystyrene foam manufacturing.

Numerical analysis on foam reaction injection molding of polyurethane, part B: Parametric study and real application

  • Han, HyukSu;Nam, Hyun Nam;Eun, Youngkee;Lee, Su Yeon;Nam, Jeongho;Ryu, Jeong Ho;Lee, Sung Yoon;Kim, Jungin
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.6
    • /
    • pp.258-262
    • /
    • 2016
  • Foam reaction injection molding (FRIM) is a widely used process for manufacturing polyurethane foam with complex shapes. The modified theoretical model for polyurethane foam forming reaction during FRIM process was established in our previous work. In this study, using the modified model, parametric study for FRIM process was performed in order to optimize experimental conditions of FRIM process such as initial temperature of mold, thickness of mold, and injection amount of polymerizing mixture. In addition, we applied the modified model to real application of refrigerator cabinet to determine optimal manufacturing conditions for polyurethane FRIM process.

A Study on the Various Volume Reducing Methods for Wasted EPS Foam (폐스티로폼의 감용방식에 관한 연구)

  • Lim, Joong-Yeon;Choi, Ho-Joon;Hwang, Beong-Bok
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2003.10a
    • /
    • pp.165-169
    • /
    • 2003
  • Current volume reduction methods for wasted expandable polystyrene (EPS) foam are summarized and compared each other. Wasted EPS foam has not been recycled effectively because of its large volume to weight ratio. This has prevented from its proper recycling because of high cost of transportation to recycling plant. Successful recycling of wasted EPS foam results directly from successful, i.e. economically and environmentally, volume reduction of wasted EPS foam. This paper deals with various methods for volume reduction methods of wasted EPS foam. Five typical methods of volume reduction are introduced and they are compared each other in terms of expected PS properties after volume reduction, cost effectiveness of each process, possible effects on environment caused by the volume reduction process, and possible recycled products. The methods include thermal, solvent, far infrared and mechanical compaction. Comparison in this paper is made mostly in qualitative manner. The focus in this study is concentrated on summarizing and comparing existing methods of volume reduction for wasted EPS foam.

  • PDF

Catalytic combustion of $H_2$/Air mixture using Pt/$Al_2O_3$ coated nickel foam (Pt/$Al_2O_3$가 코팅된 니켈폼을 이용한 수소-공기 예혼합 기체의 촉매 연소)

  • Jin, Jung-Kun;Kwon, Se-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.37-44
    • /
    • 2007
  • A nickel foam, one of metal foams was seleced as a catalyst support instead of conventional ceramic materials. $Al_2O_3$ was coated on the surface of nickel foam to increase the surface area. $Al_2O_3$ coating process was based on sol-gel process. SEM image was obtained and $Al_2O_3$ coverage was confirmed. Combustion experiments were carried out using SUS combustor and $H_2$/air mixture. Temperatures were measured with different equivalence ratios and $H_2$ flow rates. $H_2$ conversion rates were calculated by the analysis of product gas using gas chromatography. Catalytic combustion of $H_2$ was complete and stable with Pt/$Al_2O_3$ coated nickel foam and influences of water vapor were confirmed during the beginning of combustion.

  • PDF

Diisocyanate Exposure Assessment for Polyurethane Foam Manufacturing Workers (우레탄 폼 제조방식에 따른 작업자의 디이소시아네이트 노출수준 평가)

  • Jeong, Jee Yeon;Park, Sung Wook;Lee, Jee Eun;Lee, Gwang Yong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.22 no.3
    • /
    • pp.209-216
    • /
    • 2012
  • Objectives: Polyurethanes are usually formed by the reactions of liquid diisocyanate components with liquid polyol resin components. Although polyurethanes have advantageous properties, such as their versatility, the manufacturing process generates diisocyanates, which can cause asthma and respiratory irritation in exposed workers. This study compared the differences in diisocyante concentrations between two different (molded foam and slabstock foam) polyurethane foam manufacturing methods. Materials and Methods: Active samples and direct reading samples of diisocyanates (MDI, TDI) were collected in five polyurethane foam manufacturing companies. Results: Workers' exposure concentrations of diisocyanate (GM: 4.078 ppb, range: 1.190~23.770 ppb) in a slabstock foam manufacturing company were much higher than those (GM: 0.011 ppb, range: 0.001~0.055 ppb) in molded foam manufacturing companies. The results of the direct reading samples of diisocyanate indicated that the rapid reaction zone of the slabstock foam processes emitted large amounts of diisocyanates. Conclusions: The exposure levels of diisocyanates for all molded foam workers were much lower than the occupational exposure standard (5 ppb); however, exposure levels for many slabstock foam workers exceeded the standard.

Study on Properties of EPP Bead Foam (EPP 비드폼의 특성에 관한 연구)

  • Jung, Dong-Won;Lee, Eung-Kee;Park, Chul-B.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.991-997
    • /
    • 2011
  • This paper deals with the basic principles and procedures involved in the steam-chest molding process used for manufacturing expanded polypropylene (EPP) bead foam. Steam-chest molding is an integral process for EPP technology. However, little research has been carried out on the processing conditions for steam-chest molding this process. The characteristics of EPP foam are energy absorption, multiple-impact protection, low weight, structural strength, and durability. In this study, the steam pressure in steam-chest molding was varied to determine the optimum conditions for manufacturing EPP foam. Moreover, annealing was performed after EPP-foam molding to prevent the shrinkage of the steam-molded product. It was possible to verify the mechanism of foam shrinkage by observing the change in weight with time at different annealing temperatures. Moreover, a tensile test and scanning electron microscopy (SEM) analysis were performed to support these experimental results. The dimensional stability of each molded product was investigated at different steam pressures.

Experimental analysis of pultrusion process for phenolic foam composites (발포 복합재료 Pultrusion 공정의 실험적 해석)

  • Lee WooIl;Yun MyungSeok
    • Composites Research
    • /
    • v.18 no.3
    • /
    • pp.47-52
    • /
    • 2005
  • Pultrusion process of phenolic foam composite is investigated. Phenolic foam composites provide heat and flame resistance with less weight. When made into foam, a variety of properties can be obtained with different bubble size and number density. In this study, effect of process variables on the foaming characteristics of phenolic resin composites during pultrusion process has been studied experimentally. The process variables considered are the heating temperature and the pulling speed as well as the mass fraction of blowing agent. Experiments were performed using a laboratory scale pultrusion apparatus. Optimal process condition was found by observing the micro-morphology.