• 제목/요약/키워드: fmea

검색결과 307건 처리시간 0.022초

Remanufacturing Process Design for Automotive Alternator (자동차 교류발전기의 재제조 프로세스 설계)

  • Roslan, Liyana;Azmi, Nurul Ain;Jung, Won
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • 제34권4호
    • /
    • pp.179-188
    • /
    • 2011
  • This paper outlines a systematic guideline for remanufacturing process using the Failure Mode and Effect Analysis (FMEA) method in order to estimate the reliability and quality of the remanufactured alternator. The method is just a tool to help, but the remanufacturer must determine the optimal remanufacturing process and specific inspection and production that will turn the alternator as-good-as new and place the product into the market with reliability and quality equal to a new product. FMEA is a method that is widely used in industry and has shown its value and effectiveness in the above remanufacturing case study. Actions taken often result in a lower severity, occurrence or detection rating. Redesign may result in lower severity and occurrence ratings while inserting validation controls and maintenance can reduce the detection rating. The revised ratings are recorded with the originals on the FMEA template form. After these corrective actions and revisions have been established, evaluation of the ranks can be repeated, until the redesign and control parameters comply with safety standards.

A Study on the Common RPN Model of Failure Mode Evaluation Analysis(FMEA) and its Application for Risk Factor Evaluation (위험 요인 평가를 위한 FMEA의 일반 RPN 모형과 활용에 관한 연구)

  • Cho, Seong Woo;Lee, Han Sol;Kang, Juyoung
    • Journal of Korean Society for Quality Management
    • /
    • 제50권1호
    • /
    • pp.125-138
    • /
    • 2022
  • Purpose: Failure Mode and Effect Analysis (FMEA) is a widely utilized technique to measure product reliability by identifying potential failure modes. Even though FMEA techniques have been studied, the form of Risk Priority Number (RPN) used to evaluate risk priority in FMEA is still questionable because of its shortcomings. In this study, we suggest common RPN(cRPN) to resolve shortcomings of the traditional RPN and show the extensibility of cRPN. Methods: We suggest cRPN which is based on Cobb-Douglas production function, and represent the various application on weighting risk factors, weighted RPN in a mathematical way, and show the possibility of statistical approach. We also conduct numerical study to examine the difference of the traditional RPN and cRPN as well as the potential application from the analysis on marginal effects of each risk factor. Results: cRPN successfully integrates previously suggested approaches especially on the relative importance of risk factors and weighting RPN. Moreover, we analyze the effect of corrective actions in terms of econometric analysis using cRPN. Since cRPN is rely on the reliable mathematical model, there would be numerous applications using cRPN such as smart factory based on A.I. techniques. Conclusion: We propose a reliable mathematical model of RPN based on Cobb-Douglas production function. Our suggested model, cRPN, resolves various shortcomings such as consideration of the relative importance, the effect of combinations among risk factors. In addition, by adopting a reliable mathematical model, quantitative approaches are expected to be applied using cRPN. We find that cRPN can be utilized to the field of industry because it is able to be applied without modifying the entire systems or the conventional actions.

FMEA of Electric Power Management System for Digital Twin Technology Development of Electric Propulsion Vessels (전기추진선박 디지털트윈 기술개발을 위한 전력관리시스템 FMEA)

  • Yoon, Kyoungkuk;Kim, Jongsu
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • 제27권7호
    • /
    • pp.1098-1105
    • /
    • 2021
  • The International Maritime Organization has steadily strengthened environmental regulations on nitrogen oxides and carbon dioxide emitted from marine vessels. Consequently, the demand for electric propulsion vessels based on eco-friendly elements has increased. To this end, research and development has been steadily conducted for various vessels. In electric propulsion systems, a redundancy configuration is typically adopted to increase reliability and facilitate the onboard arrangement. Furthermore, studies have been actively conducted to ensure the safety of electric propulsion systems through the combination with digital twin technology. A digital twin can be used to predict outcomes in advance by implementing real-world equipment or space in a virtual world like twins, integrating real-world information and data with the virtual world, and performing computer simulations of situations that can occur in a real environment. In this study, we perform failure modes and effects analysis (FMEA) to validate the electric power management system (PMS) redundancy scheme for the digital twin technology development of electric propulsion vessels. Then, we propose the role and algorithm of PMS as a compensation function for preventing primary and secondary damages caused by a single equipment failure of the PMS and preventing additional damages by analyzing the impact on the entire system under real vessel operating conditions based on the redundancy FMEA suggested for the ship classification and certification. We verified the improvement in propulsion conservation through tests.

Analysis the Design Attribution to Assess the Design Quality Based on Detailed Design (실시설계도면 기반 설계속성 도출 및 설계품질평가)

  • Yang, Ji Su;Kim, Yea Sang
    • Korean Journal of Construction Engineering and Management
    • /
    • 제17권3호
    • /
    • pp.3-12
    • /
    • 2016
  • Recently, construction industry shows active expansion in overseas construction market. But the active work limited in construction work, on the other hand, design-drawing work is evaluated shortage of competitive power. So this study aim to improve the competitive of 'domestic design-drawing work'thorough objective evaluation. Objective evaluation is consist of 'design attribution'. Design attribution is based on the execution drawing and complement by existing reasearch, expert interview. And then, list up the 'design attribution' evaluation list to carry out a survey targeting hands-on worker. Survey is consist of 'Likert 5-point scale, FMEA method'. As a result, construction company and design company show different opinions in both relative position evaluation and importance evaluation.

Safety Assessment for Hydrogen Gas Production Facilities (Steam Reforming) (Steam Reforming방법을 이용한 수소제조설비의 안전성 평가)

  • Rhie Kwang Won;Kim Tae Hun;Kim Jung Keun;Han Seung Yong
    • Journal of the Korean Institute of Gas
    • /
    • 제9권4호
    • /
    • pp.44-49
    • /
    • 2005
  • In this study, a process safety evaluation is implemented, in which the process hazards are investigated systematically about hydrogen production plants. Be used qualitative Safety management method such as HAZOP and FMEA. Were analysed potential hazards (human errors or operating failures of every processing steps) about parameters that flow, pressure, temperature of hydrogen production plants through HAZOP that making deviations applied signified guide words. Analysed to using FMEA mainly about bad components or troubles that equipments breakdown and malfunction in facilities and then propose its influences, and counterproposal.

  • PDF

An Expected Loss Model for FMEA under Periodic Monitoring of Failure Causes (FMEA에서 주기적인 고장원인 감시 하의 기대손실 모형)

  • Kwon, Hyuck Moo;Hong, Sung-Hoon;Lee, Min Koo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • 제39권2호
    • /
    • pp.143-148
    • /
    • 2013
  • In FMEA, occurrence and detectability are not related to only failure modes itself but also their causes. It is assumed that any failure occurs after at least one cause corresponding to failure occurs in advance. Occurrence of the failure mode is described by occurrence time of its cause and elapsed time to the actual failure. Under the periodic monitoring plan, the monitoring interval is another factor to determine the detectability and occurrence of each failure mode. When a failure cause occurs, the failure does not occur if the cause is identified and remedied before it actually occurs. Under this situation, we construct an economic model for prioritizing failure modes. The loss function is based on the unfulfilled mission period. We also provide an optimal monitoring plan with an illustrative example.

Risk Priority Number using FMEA by the Plastic Moulding Machine (사출성형기의 고장모드 영향분석(FMEA)을 활용한 위험 우선순위)

  • Shin, Woonchul;Chae, Jongmin
    • Journal of the Korean Society of Safety
    • /
    • 제30권5호
    • /
    • pp.108-113
    • /
    • 2015
  • Plastic injection moulding machine is widely used for many industrial field. It is classified into mandatory safety certification machinery in Industrial Safety and Health Act because of its high hazard. In order to prevent industrial accidents by plastic injection moulding machine, it is necessary for designer to identify hazardous factors and assess the failure modes to mitigate them. This study tabulates the failure modes of main parts of plastic injection moulding machine and how their failure has affect on the machine being considered. Failure Mode & Effect Analysis(FMEA) method has been used to assess the hazard on plastic injection moulding machine. Risk and risk priority number(RPN) has been calculated in order to estimate the hazard of failures using severity, probability and detection. Accidents caused by plastic injection moulding machine is compared with the RPN which was estimated by main regions such as injection unit, clamping unit, hydraulic and system units to find out the most dangerous region. As the results, the order of RPN is injection unit, clamping unit, hydraulic unit and system units. Barrel is the most dangerous part in the plastic injection moulding machine.

Failure Modes and Effects Analysis by using the Entropy Method and Fuzzy ELECTRE III (엔트로피법과 Fuzzy ELECTRE III를 이용한 고장모드영향분석)

  • Ryu, Si Wook
    • Journal of the Korea Safety Management & Science
    • /
    • 제16권4호
    • /
    • pp.229-236
    • /
    • 2014
  • Failure modes and effects analysis (FMEA) is a widely used engineering tool in the fields of the design of a product or a process to improve its quality or performance by prioritizing potential failure modes in terms of three risk factors-severity, occurrence, and detection. In a classical FMEA, the risk priority number is obtained by multiplying the three values in 10 score scales which are evaluated for the three risk factors. However, the drawbacks of the classical FMEA have been mentioned by many previous researchers. As a way to overcome these difficulties, this paper suggests the ELECTRE III that is a representative technique among outranking models. Furthermore, fuzzy linguistic variables are included to deal with ambiguous and imperfect evaluation process. In addition, when the importances for the three risk factors are obtained, the entropy method is applied. The numerical example which was previously studied by Kutlu and Ekmekio$\breve{g}$lu(2012), who suggested the fuzzy TOPSIS method along with fuzzy AHP, is also adopted so as to be compared with the results of their research. Finally, after comparing the results of this study with that of Kutlu and Ekmekio$\breve{g}$lu(2012), further possible researches are mentioned.

A Quantitative Analysis of Fatal Accidents Related to Cranes Using the FMEA Method (FMEA 기법을 활용한 크레인 관련 중대 재해의 정량적 분석에 관한 연구)

  • Kim, Hong-Hyun;Lee, Ghang
    • Journal of the Korea Institute of Building Construction
    • /
    • 제7권3호
    • /
    • pp.115-122
    • /
    • 2007
  • As buildings become higher, larger, and more complex, safety issues for construction workers working at such environments become more important. We analyzed 83 critical accident cases reported to the KOSHA(Korea Occupational Safety & Health Agency) for construction cranes by types of cranes and by patterns of accidents and causes. There are more number of accidents related to mobile cranes than that related to tower cranes, but the numbers of dead were similar in both cases. The most dominant cause of crane accidents was "fall of materials". We also analyzed the cases of crane accidents using the FMEA(Failure Mode and Effect Analysis) in order to set up a priority for safety management and also to prioritize research and development items relating tower cranes. In the process, we tried to eliminate subjective indexes such as an expert group survey and use objective and quantitative indexes. As a result, it was found that critical crane accidents occurs most during the "lifting and translating" activity.

Service Failure Management on Internet Shopping Environment by Combining Service Blueprint and FMEA (서비스 청사진과 FMEA의 결합에 의한 인터넷 쇼핑몰 서비스 실패관리)

  • Lee, Hye-Jun;Lee, Dong-Il;Zhang, Yong
    • Journal of Korean Society for Quality Management
    • /
    • 제39권2호
    • /
    • pp.217-233
    • /
    • 2011
  • This paper introduces service failure management on internet shopping environment. The purpose of this study is to find and improve service failure modes at the time of customer's complaint thereby reducing that. To achieve this purpose, this study combines the Service Blueprint which describes the online shopping process and FMEA which finds each encounter of service failures and proposes how to recover them. First of all this study generates internet shopping process using Service Blueprint then matches customer's purchase decision making process and company's service provide process. After this process customer complaint types in real purchasing process are fell in according to their occurrence and more frequently occurred complaint is more risky. Finally 6 Risk Priority Numbers(unfair exchange/return policies, slow response/poor customer service support, purchase arrived later than promised/deliverly service dissatisfaction, dissatisfaction short period to take back/exchange/cancels order, A/S or handle defective item) are extracted and suggest their improvement.