• 제목/요약/키워드: flying capacitor

검색결과 55건 처리시간 0.019초

중전압 전동기 구동시스템을 위한 결합 인덕터를 갖는 플라잉 커패시터 MMC (Flying-Capacitor Modular Multilevel Converters with Coupled Inductors for Medium-Voltage Motor Drive System)

  • 리덕중;이동춘
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2018년도 추계학술대회
    • /
    • pp.173-174
    • /
    • 2018
  • This paper proposes the coupled inductor instead of four non-coupled inductors in each leg of the flying-capacitor modular multilevel converter (MMC) to reduce the dimension, weight and cost of the magnetic core. The simulation results have verified the effectiveness of the proposed coupled inductor.

  • PDF

Analysis of an Interleaved Resonant Converter for High Voltage and High Current Applications

  • Lin, Bor-Ren;Chen, Chih-Chieh
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권5호
    • /
    • pp.1632-1642
    • /
    • 2014
  • This paper presents an interleaved resonant converter to reduce the voltage stress of power MOSFETs and achieve high circuit efficiency. Two half-bridge converters are connected in series at high voltage side to limit MOSFETs at $V_{in}/2$ voltage stress. Flying capacitor is used between two series half-bridge converters to balance two input capacitor voltages in each switching cycle. Variable switching frequency scheme is used to control the output voltage. The resonant circuit is operated at the inductive load. Thus, the input current of the resonant circuit is lagging to the fundamental input voltage. Power MOSFETs can be turn on under zero voltage switching. Two resonant circuits are connected in parallel to reduce the current stress of transformer windings and rectifier diodes at low voltage side. Interleaved pulse-width modulation is adopted to decrease the output ripple current. Finally, experiments are presented to demonstrate the performance of the proposed converter.

Flying Capacitor DTC Drive with Reductions in Common Mode Voltage and Stator Overvoltage

  • Rahmati, Abdolreza;Arasteh, Mohammad;Farhangi, Shahrokh;Abrishamifar, Adib
    • Journal of Power Electronics
    • /
    • 제11권4호
    • /
    • pp.512-519
    • /
    • 2011
  • This paper gives a detailed analysis of the direct torque control (DTC) strategy in a five-level drive and proposes a 24-sector switching table. The known problems in low-voltage drives such as bearings currents and an overvoltage phenomenon which leads to premature failure are reviewed and the occurrence of these problems in medium voltage drives has been investigated. Then a solutions to these problems is presented and the switching table to deal with these problems is modified. Simulation and experimental results on a 3kVA prototype confirm the proposed solution. In implementing the above strategy a TMS320F2812 is used.

커패시터 전압 자기 밸런싱 기능이 있는 새로운 6-레벨 인버터 토폴로지 (A Novel Six-Level Inverter Topology with Capacitor Voltage Self-Balancing)

  • 프리바디조나단;이동춘
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2020년도 전력전자학술대회
    • /
    • pp.316-317
    • /
    • 2020
  • In this paper, a novel six-level inverter is proposed. Voltage regulation is applied at DC-link and flying capacitors through the implementation of phase-shifted carrier-based modulation with zero-sequence voltage injection. The performance of the proposed structure has been verified under various modulation indices, where low voltage ripple is achieved at each capacitor and total harmonic distortions (THD) of line voltage at unity modulation index is about 15.95%.

  • PDF

Implementation of One-Cycle Control for Switched Capacitor Converters

  • Yang, Lei;Zhang, Xiaobin;Li, Guann-pyng
    • Journal of Power Electronics
    • /
    • 제16권6호
    • /
    • pp.2057-2066
    • /
    • 2016
  • An extension of the one-cycle control (OCC) method for switched-capacitor (SC) converters is proposed in this paper, featuring a fast dynamic response, wide line and load operation ranges, and simplicity in implementation. To illustrate the operation principle of this nonlinear control method and to demonstrate its simplicity in design, a dual-phase unity gain SC converter is examined. A new control loop based on the charge balance in a flying capacitor is formulated for the OCC technique and implemented with a 15W dual-phase unity gain SC converter on a circuit board for control verification. The obtained experimental results show that external disturbances can be rejected in one switching cycle by the OCC controlled SC converter with good line and load regulations. When compared to other control methods, the proposed nonlinear control loop exhibits superior dynamic performance in suppressing input and load disturbances.

H-type Structural Boost Three-Level DC-DC Converter with Wide Voltage-Gain Range for Fuel Cell Applications

  • Bi, Huakun;Wang, Ping;Che, Yanbo
    • Journal of Power Electronics
    • /
    • 제18권5호
    • /
    • pp.1303-1314
    • /
    • 2018
  • To match the dynamic lower voltage of a fuel cell stack and the required constant higher voltage (400V) of a DC bus, an H-type structural Boost three-level DC-DC converter with a wide voltage-gain range (HS-BTL) is presented in this paper. When compared with the traditional flying-capacitor Boost three-level DC-DC converter, the proposed converter can obtain a higher voltage-gain and does not require a complicate control for the flying-capacitor voltage balance. Moreover, the proposed converter, which can draw a continuous and low-rippled current from an input source, has the advantages of a wide voltage-gain range and low voltage stress for power semiconductors. The operating principle, parameters design and a comparison with other converters are presented and analyzed. Experimental results are also given to verify the aforementioned characteristics and theoretical analysis. The proposed converter is suitable for application of fuel cell systems.

25MW급 대용량 멀티레벨 인버터의 시뮬레이션 기반 손실해석과 출력특성 비교 분석 (Simulation based Comparative Loss Analysis and Output Characteristic for 25MW Class of High Power Multi-level Inverters)

  • 김이김;박찬배;백제훈;곽상신
    • 전력전자학회논문지
    • /
    • 제20권4호
    • /
    • pp.337-343
    • /
    • 2015
  • The multi-level inverters are highly efficient for high-power and medium-voltage AC driving applications, such as high-speed railway systems and renewable energy resources, because such inverters generate lower total harmonic distortion (THD) and electromagnetic interface (EMI). Lower switching stress occurs on switching devices compared with conventional two-level inverters. Depending on the multi-level inverter topology, the required components and number of switching devices are different, influencing the overall efficiency. Comparative studies of multi-level inverters based on loss analysis and output characteristic are necessary to apply multi-level inverters in high-power AC conversion systems. This paper proposes a theoretical loss analysis method based on piecewise linearization of characteristic curves of power semiconductor devices as well as loss analysis and output performance comparison of five-level neutral-point clamped, flying capacitor inverters, and high-level cascaded H-bridge multi-level inverters.

Novel Five-Level Three-Phase Hybrid-Clamped Converter with Reduced Components

  • Chen, Bin;Yao, Wenxi;Lu, Zhengyu
    • Journal of Power Electronics
    • /
    • 제14권6호
    • /
    • pp.1119-1129
    • /
    • 2014
  • This study proposes a novel five-level three-phase hybrid-clamped converter composed of only six switches and one flying capacitor (FC) per phase. The capacitor-voltage-drift phenomenon of the converter under the classical sinusoidal pulse width modulation (SPWM) strategy is comprehensively analyzed. The average current, which flows into the FC, is a function of power factor and modulation index and does not remain at zero. Thus, a specific modulation strategy based on space vector modulation (SVM) is developed to balance the voltage of DC-link and FCs by injecting a common-mode voltage. This strategy applies the five-segment method to synthesize the voltage vector, such that switching losses are reduced while optional vector sequences are increased. The best vector sequence is then selected on the basis of the minimized cost function to suppress the divergence of the capacitor voltage. This study further proposes a startup method that charges the DC-link and FCs without any additional circuits. Simulation and experimental results verify the validity of the proposed converter, modulation strategy, and precharge method.

Active Voltage-balancing Control Methods for the Floating Capacitors and DC-link Capacitors of Five-level Active Neutral-Point-Clamped Converter

  • Li, Junjie;Jiang, Jianguo
    • Journal of Power Electronics
    • /
    • 제17권3호
    • /
    • pp.653-663
    • /
    • 2017
  • Multilevel active neutral-point-clamped (ANPC) converter combines the advantages of three-level ANPC converter and multilevel flying capacitor (FC) converter. However, multilevel ANPC converter often suffers from capacitor voltage balancing problems. In order to solve the capacitor voltage balancing problems for five-level ANPC converter, phase-shifted pulse width modulation (PS-PWM) is used, which generally provides natural voltage balancing ability. However, the natural voltage balancing ability depends on the load conditions and converter parameters. In order to eliminate voltage deviations under steady-state and dynamic conditions, the active voltage-balancing control (AVBC) methods of floating capacitors and dc-link capacitors based on PS-PWM are proposed. First, the neutral-point current is regulated to balance the neutral-point voltage by injecting zero-sequence voltage. After that, the duty cycles of the redundant switch combinations are adjusted to balance the floating-capacitor voltages by introducing moderating variables for each of the phases. Finally, the effectiveness of the proposed AVBC methods is verified by experimental results.

2차측 보조 회로를 이용한 ZVZCS Three Level DC/DC 컨버터에 관한 연구 (A Study on the Zero-Voltage and Zero-Current-Switching Three Level DC/DC Converter using Secondary Auxiliary Circuit)

  • 배진용;김용;권순도;김필수;이은영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.320-323
    • /
    • 2001
  • A ZVZCS(Zero-Voltage and Zero-Current-Switching) Three Level DC/DC Converter is presented to secondary auxiliary circuit. The converter presented in this paper used a phase shift control with a flying capacitor in the primary side to achieve ZVS for the outer switch. A secondary auxiliary circuit, which consists of one small capacitor and two small diode, is added in the secondary to provides ZVZCS conditions to primary switches, and aids to clamp secondary rectifier voltage. The auxiliary circuit Includes neither lossy component nor addition active switch, which makes the proposed converter efficient and effective. The principle of operation, feature, and design considerations are illustrated and verified through the experiment with a 500W 50kHz prototype converter.

  • PDF