• 제목/요약/키워드: fly ash cement

검색결과 997건 처리시간 0.024초

A Study on the Fluidity of Antiwashout Underwater Concrete Containing Fly Ash (Fly Ash를 사용한 수중불분리 콘크리트의 유동성에 관한 연구)

  • 권중현;배기성
    • Journal of Ocean Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.153-161
    • /
    • 1998
  • This paper is to investigate the Fluidity of Antiwashout Underwater Concrete containing Fly Ash. The results of study are concluded as follows: the increase in Slump Flow value did not happen in the plain concrete which was replaced cement by Fly Ash; however, the maximum value could reach in the replacement of 30% of Fly Ash by weight of cement in the Fly Ash replaced concrete. On the condition of Fly Ash-Antiwashout Underwater Concrete in expecting 50 cm of the Slump Flow, it was necessary that the usage amount of Superplasticizer be around 1% of unit Binder, and 1.5% in 60 cm of the Slump Flow, respoectively.

  • PDF

Compressive Strength Properties of Steam-Cured Low Cement Mortar (증기양생한 저시멘트 모르타르의 압축강도 특성)

  • Yoon, Seong-Joe;Im, Geon-Woo;Lee, Gun-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.295-296
    • /
    • 2023
  • This study evaluated the compressive strength after making mortar with low cement composition for carbon-neutral steam curing to respond to climate change. Blast furnace slag, fly ash, and ultra-high powder fly ash were used as substitutes for cement. The cement substitute was used at 40% of the mass of cement, and after steam curing, the compressive strength was measured on the 1st, 3rd, 7th and 28th days of age. As a result of the experiment, at the age of 1 day, the mixture using only cement showed the highest strength, but from the 3rd day, the specimen using ultra-high powder showed a high strength development rate, followed by blast furnace slag and fly ash.

  • PDF

Nitrogen Oxides Adsorbing Capacity of High Carbon Fly Ash Containing Cementitious Materials (탄소함량이 높은 플라이애쉬를 함유한 시멘트 페이스트의 질소산화물 흡착 성능)

  • Lee, Bo Yeon
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • 제34권3호
    • /
    • pp.37-42
    • /
    • 2018
  • The use of fly ash in construction materials is increasing worldwide due the various advantages of using it, such as to produce durable concrete, or to use less cement and thus lower carbon dioxide emissions. The quality of fly ash is often determined by loss on ignition value (LOI), where an upper limit of LOI is set in each country for quality control purpose. However, due to many reasons, production of high LOI fly ash is increasing that cannot be utilized in concrete, ending up in landfill. In this study, the effect of fly ash use in cementitious materials on nitrogen oxides adsorption is examined. In particular, the effect of using high LOI, and thus high carbon content fly ash on nitrogen oxides adsorption is investigated. The results suggest that the higher carbon content fly ash is related to higher nitrogen dioxide adsorption, although normal fly ash was also more effective in nitrogen dioxide adsorption than ordinary portland cement. Also, higher replacement rate of up to 40% of fly ash is beneficial for nitrogen dioxide adsorption. These results demonstrate that high carbon fly ash can be used as construction materials in an environmentally friendly way where strength requirement is low and where nitrogen oxides emissions are high.

The Strength of the Portland-Cement Mortar Use of Fly-ash (플라이애쉬를 사용한 시멘트 모르터의 강도에 관한 연구)

  • 서기원;서치호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 1991년도 봄 학술발표회 논문집
    • /
    • pp.19-22
    • /
    • 1991
  • In order to the Utilization of Fly ash, The Properties of cement Mortar use of Fly ash based on Mixing rate, strength of mortar, W/C+F and quantity of Fly ash, Flow value, and unit weight are investigated. So follow result are unit weight of mortar of Fly ash is about 2014 Kg/㎥, Compressive strength of mortar is 50-404 Kg/$\textrm{cm}^2$ and beneficial reference to the utility of domestic Fly ash were obtained.

  • PDF

Study of Freeze-thaw Resistance of Concrete using Fly-ash (플리이애쉬를 사용한 콘크리트의 동결융해 저항성에 관한 연구)

  • 최세규;임정호;김생빈;이석홍
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회 논문집(I)
    • /
    • pp.123-128
    • /
    • 1998
  • Currently the study on the effective use of the fly ash is concentrated as construction materials, which is by product of electric power generating plants. Fly ash, therefore, can be used as concrete admixture for the purpose of not only increasing the concrete quality but also of utilizing materials. Within the country it is not easy to use fly ash for the construction purpose because the properties of fly ash are varied due to the use of different raw ores in the various power plants. And little previous construction experiments and the basic experiments about the formation of bubbles are performed. In this study the water-cement ratio is varied in 3 different values and compressive strength is measured and freeze-thaw experiments are preformed to establish the relationships between water-cement ratios and the durability. And also for each batch of different water-cement ratio fly ash is substituted 10%, 20% and 30% of cement and concrete mixture the admixture and the formation of bubbles and also freeze-thaw resistance.

  • PDF

A Study on Sodium Sulfate Activited the Hydration Properties of Fly Ash-cement Paste (황산염나트륨 자극제를 사용한 플라이 애쉬 혼입 시멘트 페이스트의 초기 수화 특성에 관한 기초적 연구)

  • Wang, Zihao;Sun, Yang;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 한국건축시공학회 2021년도 봄 학술논문 발표대회
    • /
    • pp.129-130
    • /
    • 2021
  • In order to solve the problem of low early-age compressive strength of high volume fly ash concrete. This paper studies the effect of 2% sodium sulfate (Na2SO4) as a chemical activator on the paste with 40% fly ash content and a water-binder ratio of 0.30. The results indicate that the addition of Na2SO4 can effectively improve the early-age compressive strength of the fly ash-cement system, and the strength improvement rate on the first day reached nearly 70%. In addition, calorimetric analysis reveals that the incorporation of Na2SO4 promotes the early hydration of cement and fly ash, increases the cumulative hydration heat and delays the heat peak of the aluminum phase.

  • PDF

Strength and durability characteristics of bricks made using coal bottom and coal fly ash

  • Ashish, Deepankar Kumar;Verma, Surender Kumar;Singh, Joginder;Sharma, Namesh
    • Advances in concrete construction
    • /
    • 제6권4호
    • /
    • pp.407-422
    • /
    • 2018
  • The study evaluates properties of brick having coal ash and explores the possibility of utilization of coal bottom ash and coal fly ash as an alternative raw material in the production of coal ash bricks. Lower cement content was used in the investigations to attain appropriate strength and prohibit high carbon content that is cause of environmental pollution. The samples use up to 7% of cement whereas sand was replaced with bottom ash. Bricks were tested for compressive strength, modulus of rupture, ultrasonic pulse velocity (UPV), water absorption and durability. The results showed mix proportions of bottom ash, fly ash and cement as 1:1:0.15 i.e., M-15 achieved optimum values. The coal ash bricks were well bonded with mortar and could be feasible alternative to conventional bricks thus can contribute towards sustainable development.

Properties of Self-Compacting Concrete Using Ground Granulated Blast Furnace Slag and Fly ash (고로슬래그미분말 및 플라이애쉬를 사용한 고유동콘크리트의 특성에 관한 연구)

  • 김은겸;박천세;최재진;전찬기;이호석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.89-94
    • /
    • 2003
  • In this research, the physical properties of self compacting concrete using ground granulated blast furnace slag and fly ash as a part of cement were investigated. Concrete using ground granulated blast furnace slag and fly ash was prepared with various ground granulated blast furnace slag(30-50 volume %) and fly ash(10-20 volume %) replacement for cement. The effect of each of the materals, which have effects on self compacting concrete made by the basic mix proportion used granulated blast furnace slag and fly ash after hardening, has been checked. The workability, flowing characteristics, resistance of segregation of materals, air content, and compressive strength of concrete using ground granulated blast furnace slag and fly ash were tested and the results were compared with those of ordinary portland cement concrete. In the experiment, we acquired satisfactory results at the point of flowing characteristics and strengths of concrete using ground granulated blast furnace and slag fly ash within the replacement ratio of 65%

  • PDF

A Fundamental Study on the Mix Design in High Volume Fly-Ash Concrete (플라이애시를 대량 사용한 콘크리트의 배합설계를 위한 기초적 연구)

  • 심재형;김재환;최희용;강석표;최세진;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.641-646
    • /
    • 2001
  • Generally, when Fly-Ash was used as replacement material of cement in concrete, it might occur retardation of setting and hardening. So, it is unable to use a large amount of Fly-Ash as replacement for cement. However, if it is used as replacement material of fine aggregate in concrete, we can use a large amount of Fly-Ash and settle a problem of natural-aggregate exhaustion. Furthermore, engineering properties of High Volume Fly-Ash Concrete Is better than that of plain concrete But, the larger Fly-Ash is replaced, the more fluidity of High Volume Fly-Ash Concrete decrease, because porous organization of Fly-Ash adsorb water and Superplasticizer. In this study, after appending additional water to High Volume Fly-Ash Concrete in proportion to weight of Fly-Ash, we intend to find proper ratio which doesn't affect strength and satisfy fluidity As a result of this study, it was found that fluidity of mortar with 25~28 percentage of additional water was satisfied with fluidity of plain mortar, and compressive strength of that was similar to plain mortar's

  • PDF

Permeability Characteristics of Cement Mixtures with Powdered Sludge of Basalt in Jeju Island (제주도 현무암 석분슬러지를 포함한 시멘트 혼합체의 투수특성)

  • Lee, Yang-Gyu;Yun, Jung-Mann;Song, Young-Suk;Kim, Ki-Young;Hong, Kikwon
    • Journal of the Korean Geosynthetics Society
    • /
    • 제14권4호
    • /
    • pp.159-165
    • /
    • 2015
  • In this study, the coefficient of permeability for cement mixtures including the powdered sludge of basalt, sand or fly ash with different mixed ratios was measured in order to reuse the powdered sludge of basalt in Jeju Island as the cut off materials. As the permeability test results, the coefficient of permeability for the cement mixtures with fly ash was increased with increasing the fly ash contents. The amount of fly ash in the cement mixtures should be mixed with less than 8 %. Meanwhile, the coefficient of permeability for the cement mixtures with sand was increased with increasing the sand contents. The amount of sand in the cement mixtures should be mixed with less than 40 %. According to the comparison result of cement mixtures including fly ash or sand, it is more advantageous to put the sand into the cement mixtures, rather than mixing the fly ash.