• Title/Summary/Keyword: fly

Search Result 3,126, Processing Time 0.03 seconds

Statistical Analysis of Fly-by interactions between Galaxies via Cosmological Simulations

  • An, Sung-Ho;Kim, Jeonghwan;Yun, Kiyun;Kim, Juhan;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.51.2-51.2
    • /
    • 2013
  • Galactic fly-by interactions are believed to be far more frequent than direct mergers, acting as hidden drivers of galaxy evolution. We perform a tree-particle-mesh code GOTPM, and investigate the statistical properties of the fly-by interactions as functions of halo masses and ambient environments. Based on the total energy of the two halos of interest, impulsive fly-by pairs are identified from eventual merger candidates. We find three obvious results as follows: (1) Halos in the high-dense environment experience more frequent mergers and fly-by encounters than those in the low-dense region; (2) In the massive halos, both merger and fly-by fractions evolve more dramatically with time than those in dwarfs; and (3) The fly-by fraction decreases as approaching the present epoch, in contrast to the increase of the merger fraction.

  • PDF

Properties of Flowable High-volume Fly Ash-Cement Composites (다량의 플라이애쉬를 사용한 유동성 시멘트복합체의 특성)

  • 원종필;신유길;안태송
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.105-110
    • /
    • 1998
  • The purpose of this was to examine the used of fly ash as a type of construction material. In this paper the results from a recent study on development of a cement composite utilizing relatively large amount of fly ash are presented. The flowable fly ash-cement sand composite was investigated for strength and flowability characteristics. The independent variable considered were: fly-ash content, sand content, and ratio of water to cementitious materials. Results of this study show that high volume fly-ash composite can be proportioned to obtain 10~15kg/$\textrm{cm}^2$ compressive strength at 28 days. For applications requiring strength between 10kg/$\textrm{cm}^2$ and 15kg/$\textrm{cm}^2$, the mixture with fly ash-cement ratio of 5.6 and sand-cement ratio of 28 with relatively high water content may be used. Slump was held at 25$\pm$1cm for all mixtures produced compressive strength at 28 days were found to range from 5kg/$\textrm{cm}^2$ to 13.7kg/$\textrm{cm}^2$.

  • PDF

A Study on the Application in Site of the Concrete Using Fly Ash Produced in Combined Heat Power Plant (열병합발전소 플라이애쉬를 사용한 콘크리트의 현장적용에 관한 연구)

  • 김무한;이상수
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.5
    • /
    • pp.41-49
    • /
    • 1999
  • This study dealt with the applicability and quality control of the concrete using fly ash produced in combined heat power in a construction site. Firstly, chemical and physical characteristics of the fly ash produced in combined heat power plant re analysed. Also, after investigating the properties of flesh and hardened concrete through various experiments, the fly ash concrete was placed in depositing construction in Ulsan Petrochemical Service Co. This field application was focussed on the quality control system in the site as production, placing and curing of concrete. As the result of this study, the quantity of CaO in the fly ash is relatively high based on the chemical analysis. The fly ash concrete showed slumping maintenance and high viscosity properties in the optimal mixing conditions (W/B:44~45%, S/a:$45\pm$2%, W:185kg/m). And, quality control and assurance of the fly ash concrete in actual site were verified by various testing methods.

Improvement of Properties in High Strength Concrete Using Fly ash and Gypsum (플라이 애시 및 석고를 활용한 고강도용 콘크리트의 성능개선)

  • 김기형;최재진;최연황
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.89-94
    • /
    • 1999
  • The workability of high strength concrete using high range water reducing admixture is varied rapidly according to elapsed time. For using the high strength concrete in situ, careful caution on workability is necessary. By using fly ash as a admixture, the slump loss of concrete can be reduced considerably, but the early strength of concrete used fly ash is smaller than that not used fly ash. For the purpose of elevating the utilization of fly ash on high strength concrete, the high fluidity retention and the strength development in early age are necessary in concrete used fly ash. In this study, to improve the fluidity retention and to acquire strength development on concrete used fly ash, the gypsum is applied.

  • PDF

Removal of Heavy Metals from Aqueous Solution by Fly Ash

  • Cho, Hee-Chan;Oh, Dal-Young
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.494-499
    • /
    • 2001
  • The present work investigates the possible use of fly ash for the removal of heavy metal ions from aqueous solutions. Batch experiments were conducted and the influences of metal concentration, pH, and fly ash concentration were investigated. Heavy metals used in these studies were zinc, lead and cadmium. Adsorption studies were done over a range of pH values (3-10) at $25^{\circ}C$ and heavy metal concentrations of 10-400 mg/L using fly ash concentrations of 10, 20 and 40 g/L. Experiments were also conducted without fly ash to determine the extent of heavy metal removal by precipitation. Kinetic and equilibrium experiments were performed and adsorption data were correlated with both Langmuir and Freundlich adsorption models. The results indicate that fly ash can be used as an adsorbent for heavy metals in the aqueous solutions, yet the degree of removal depends on the pH.

  • PDF

Properties of Self-Compacting Concrete Using Ground Granulated Blast Furnace Slag and Fly ash (고로슬래그미분말 및 플라이애쉬를 사용한 고유동콘크리트의 특성에 관한 연구)

  • 김은겸;박천세;최재진;전찬기;이호석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.89-94
    • /
    • 2003
  • In this research, the physical properties of self compacting concrete using ground granulated blast furnace slag and fly ash as a part of cement were investigated. Concrete using ground granulated blast furnace slag and fly ash was prepared with various ground granulated blast furnace slag(30-50 volume %) and fly ash(10-20 volume %) replacement for cement. The effect of each of the materals, which have effects on self compacting concrete made by the basic mix proportion used granulated blast furnace slag and fly ash after hardening, has been checked. The workability, flowing characteristics, resistance of segregation of materals, air content, and compressive strength of concrete using ground granulated blast furnace slag and fly ash were tested and the results were compared with those of ordinary portland cement concrete. In the experiment, we acquired satisfactory results at the point of flowing characteristics and strengths of concrete using ground granulated blast furnace and slag fly ash within the replacement ratio of 65%

  • PDF

Compaction and unconfined compressive strength of sand modified by class F fly ash

  • Bera, Ashis K.;Chakraborty, Sourav
    • Geomechanics and Engineering
    • /
    • v.9 no.2
    • /
    • pp.261-273
    • /
    • 2015
  • In the present investigation, a series of laboratory compaction and unconfined compressive strength laboratory tests has been performed. To determine the effect of compaction energy, type of sand, and fly ash content, compaction tests have been performed with varying compaction energy ($2700kJ/m^3-300kJ/m^3$), types of sand, and fly ash content (0% to 40%) respectively. From the experimental results, it has been found that the optimum value of unconfined compressive strength obtained for a sand-fly ash mixture comprised of 65% sand and 35% fly ash. Based on the data obtained in the present investigation, a linear mathematical model has been developed to predict the OMC of sand-fly ash mixture.

Geotechnical properties of Fly ash - Water treatment sludge mixture (플라이애쉬-하수처리슬러지 혼합물의 지반공학적 특성(지반공학))

  • 권무남;구정민;이상윤;채교익
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.458-465
    • /
    • 2000
  • Although Fly ash possess viable engineering properties, an overwhelming majority of the fly ash from coal combustion is still placed in storage or disposal sites. Similarly, sludges generated from various water treatment operations are predominantly subject to the fate of land disposal. To prepare sludges for land disposal typically requires time consuming dewatering schemes, which can become extremely difficult to execute dependent upon the composition of the sludge and its affinity for water. This test was undertaken to reuse of fly ash and sludge with mix. In this paper includes of geotechnical properties of fly ash and fly ash-sludge mixture and results of compaction test, unconfined test, falling head test and CBR test and it was analyzed the effect on mixing fly ash with sludge.

  • PDF

Experimental Study on physical and Mechanical Properties of Concrete with Fly Ash (플라이 애시를 혼입한 콘크리트의 물리.역학적 특성에 관한 실험적 연구)

  • 성찬용
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.3
    • /
    • pp.107-113
    • /
    • 2000
  • This study is performed to examine the physical and mechanical properties of concrete with fly ash. Test results show that the unit weights of concrete with fly ash are decreased 1-3% and the highest strength is achieved by 10% filled fly ash concrete with it is increased 7% than that of the normal cement concrete. the ultrasonic pulse velocity is in the range of 3.705~4.204m/s and the dynamic and static modulus of elasticity is in the range of 271$\times$103 ~289$\times$103kgf/cm2 and 208$\times$103 ~262$\times$103kgf/cm2 respectively. The acid-resistance is increased with increase of the content of fly ash. It is 1.2 times of the normal cement concrete by 10% filled fly ash concrete and 1.7 times by 30% filled fly ash concrete respectively.

  • PDF

Strength Behaviour and Hardening Mechanism of Chemical Bonded Fly Ash Mortar (화학적 결합에 의한 Fly ash 경화체의 강도 발현 메카니즘)

  • Jo Byung Wan;Moon Rin Gon;Park Seung Kook;Ko Hee Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.373-376
    • /
    • 2005
  • The discharge of fly ash that is produced by coal-fired electric power plants is rapidly increasing in Korea. The utilization of fly ash in the raw materials would contribute to the elimination of an environmental problem and to the development of new high-performance materials. Fly ash consists of a glass phase. As it is produced from high temperature, it is a chemically stable material. Fly ash mostly consists of $SiO_{2}$ and $Al_{2}O_{3}$, and it assumes the form of an oxide in the inside of fly ash. Because this reaction has not broken out by itself, it is need to supply it with additional $OH^{-}$ through alkali activators. We used alkali activators for supplying it with additional $OH^{-}$. This paper concentrated on the strength development according to the kind of chemical activators, the curing temperature, the heat curing time.

  • PDF