• Title/Summary/Keyword: flux tube

Search Result 552, Processing Time 0.017 seconds

Effects of Contrast Improvement on High Voltage Rectification Type of X-ray Diagnostic Apparatus (X선 진단장치의 고압정류방식이 대조도 향상에 미치는 영향)

  • Lee, Hoo-Min;Yoon, Joon;Kim, Hyun-Ju
    • Journal of radiological science and technology
    • /
    • v.37 no.3
    • /
    • pp.187-193
    • /
    • 2014
  • The purpose of this study was to analyze the effect on the selectivity on of high-voltage rectification device that measured the performance of the grid, and the contrast improvement ability (K factor) by measuring the scattered radiation content of the transmitted X-rays. The scattered radiation generated when the X-ray flux comes from the diagnostic X-ray generator that passes through an object. Targeting four different rectifications of X-ray generators, the mean value of the tube voltage and the tube current was measured in order to maximize the accuracy of the generating power dose within the same exposure condition. Using fluorescence meter, the content of the scattered rays that are transmitted through the acrylic was measured depending on the grid usage. When grid is not used, the content of the scattered rays was the lowest (34.158%) with the single-phase rectifier, was increased with the inverter rectifier (37.043%) and the three-phase 24-peak rectification method (37.447%). The difference of the scattered radiation content of each device was significant from the lowest 0.404% to the highest 3.289% while using 8:1 grid, the content of the scattered ray was the lowest with the single content of the scattered ray was the lowest with the single-phase rectifier (18.258%), was increased with the rectifier (25.502%) and the 24-peaks rectification (24.217%). Furthermore, there was difference up to content 7.244% to the lowest content 1.285% within three-phase 24-peaks rectification, inverter rectifications, and single-phase rectifier depending on the selectivity of the grid. Drawn from the statistical analysis, there was a similar relationship between the contrast improvement factor and the K factor. As a result, the grid selectivity and the contrast were increased within the single-phase rectifier rather than the constant voltage rectifier.

Actual Condition of Quality Control of X-ray Imaging System in Primary Care Institution: focused on Gwangju Metropolitan City (1차 의료기관의 엑스선 발생장치 정도관리에 관한 현황조사:광주광역시 지역을 중심으로)

  • Dong, Kyung-Rae;Lee, Seun-Joo;Kweon, Dae-Cheol;Goo, Eun-Hoe;Jung, Jae-Eun;Lee, Kyu-Su
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.1
    • /
    • pp.34-42
    • /
    • 2010
  • With the expanded use of radiation in modern medical practices, the most important issue in regards to efforts to reduce individual exposure dose is quality assurance. Therefore in order to study the present condition of quality assurance, the Gwangju Metropolitan City area was divided into five districts each containing ten hospitals. Four experiments were conducted: a reproducibility experiment for kVp, mA, and examination time (sec) intensity of illumination; half-value layer (HVL) measurement; and beam perpendicularity test matching experiment. The tube voltage reproducibility experiment for all fifty hospitals resulted in a 95.33% passing rate and mA and examination time both resulted in a 77.0% passing rate. The passing rate for intensity of illumination was 86.0% and 52.0% for HVL, which was the lowest passing rate of all four factors. For the beam perpendicularity test matching experiment, generally the central flux is matched to within $1.5^{\circ}$. Of all fifty hospitals 30.0% were beyond $3^{\circ}$. The results of the survey showed that 58% responded that they knew about quality assurance cycle. All fifty respondents stated that they have not received any training in regards to quality assurance at their current place of employment. Although quality assurance is making relative progress, the most urgent issue is awareness of the importance of quality assurance. Therefore, the implementation of professional training focusing on safety management and accurate quality assurance of radiation will reduce the exposure to radiation for radiologists and patients and higher quality imaging using less dosage will also be possible.