• Title/Summary/Keyword: flux transfer method

Search Result 269, Processing Time 0.023 seconds

A Numerical Study on the Cooling Characteristics of Seeker Windows for Selecting Efficient Cooling Method (효율적인 냉각 방식 선정을 위한 탐색창 냉각 특성 해석 연구)

  • Kim, Manshik;Lee, Dong Min
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.246-254
    • /
    • 2017
  • In this paper, cooling characteristics of seeker windows were examined using the Sinda-Fluint software. Various cooling methods were considered to satisfy the limit temperature of the cooled seeker window which would be exposed to excessive aerodynamic heating conditions by varying coolant type and mass flow rate of coolant. Due to the enhanced heat transfer between the coolant and the seeker window, internally cooled seeker window which uses liquid coolant showed lowered temperature distribution in the window compared to internally cooled seeker window which uses gas coolant. External film cooled seeker window also showed good cooling characteristics because it reduces the convective heat flux to the seeker window fundamentally. It was also confirmed that the temperature and the temperature gradient of seeker windows were significantly reduced for the cases which use external film cooling additionally to the gas and liquid cooled seeker window.

A model of Photon Dominated Region(PDR) for the UV-heated outflow walls in the embedded protostellar objects

  • Lee, Seok-Ho;Lee, Jeong-Eun;Park, Yong-Sun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.83.1-83.1
    • /
    • 2012
  • We have developed an self-consistent PDR model to synthesize warm CO lines of Herschel/PACS observations more accurately. The PDR model solves the FUV continuum radiative transfer, gas energetics, and chemistry simultaneously. A local FUV radiation flux is calculated by using a Monte Carlo method taking anisotropic scattering into account. A new (r, ${\delta}$) coordinate system was used, where the r is the distance from the origin and the ${\delta}$ is z/$R^2$ in the cylindrical coordinate of (R,z). This is an adequate coordinate system to represent a power-law density of an envelope and a high spatial resolution near the outflow wall. The gas enegetics and chemistry are solved locally and considered $10^4K$ blackbody radiation field instead of the interstellar radiation filed. This newly developed model can be used to analyze quantitatively the effect of UV-heated outflow walls on the warm molecular lines in the embedded proto-stellar objects.

  • PDF

A Study on the Thermo-mechanical Behavior of Underground Openings in lsotropic and Structurally Snisotropic Rock Masses (등방 및 이방성 암반내 공동의 열역학적 거동에 관한 전산모델연구)

  • 문현구;주광수
    • Tunnel and Underground Space
    • /
    • v.1 no.2
    • /
    • pp.181-203
    • /
    • 1991
  • The effects of geologic structures such as rock joins and bedding planes on the thermal conductivity of a discontinuous rock mass are studied. The expressions for the equivalent thermal conductivities of jointed rock masses are derived and found to be anisotropic. The degree of anisotropy depends primarily on the thermal properties contrast between the joint phase and surrounding intact rock, the joint density expressed as volume fraction and the inclination angle of the joint. Within the context of 2-dimensional finite element heat transfer scheme, the isotherms around a circular hole are analyzed for both the isotropic and anisotropic rock masses in 3 different thermal boundary conditions. i.e. temperature, heat flux and convection boundary conditions. The temperature in the stratified anisotripic rock mass is greatly influenced by the thermal properties of the rock formation in contact with the heat source. Using the excavation-temperature coupled elastic plastic finite element method, analyzed is the thermo-mechanical stability of a circular opening subjected to 10$0^{\circ}C$ at a depth of 527m. It is found that the thermal stress concentration was enough to deteriorate the stability and form a plastic yield zone around the opening, in contrast to the safety factor greater than 2 resulted form the excavation-only analysis.

  • PDF

Design of Moving Coil Type Optical Pickup Actuator for Flexible Disk System (유연디스크용 가동 코일형 광 픽업 엑추에이터 개발)

  • Kim, Yoon-Ki;Song, Myeong-Gyu;Lee, Dong-Ju;Yoo, Jeong-Hoon;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.4
    • /
    • pp.240-244
    • /
    • 2006
  • As high-definition television(HDTV) broadcasting becoming more generalized, there have been many researches and developments about a large storage capacity and a fast data transfer rate in optical disk drives (ODD). Pickup actuators must have high flexible mode frequencies and large gain margins. Flexible modes are caused by the flexibility of moving parts in the actuator and a servo bandwidth is limited by them. As a result, the system becomes unstable for high-speed operations in high density reading and recording. In this paper, we suggest improved modeling method in considering of the bonding layer. And, the flexible mode frequency of actuator is improved by Design of Experiments of lens holder. The Magnet circuit is designed considering the relation with the moving part. Through improving the yoke design, the magnetic flux is changed and the DC tilt is reduced. Consequently, we designed an actuator which has a high flexible mode frequency and a large gain margins.

  • PDF

Characteristics on Spray Cooling Performance on the Micro-Porous Coated Surfaces (마이크로다공성 발열체 표면에서의 액체분무 냉각성능 특성)

  • Kim Yoon-Ho;Choi Chi-Hwan;Lee Kyu-Jung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.4
    • /
    • pp.304-311
    • /
    • 2006
  • Experiments on evaporative spray cooling on the square plate heaters with plain or micro-porous coated surfaces were performed in this study. Micro-porous coated surfaces were made by using DOM [Diamond particle, Omegabond 101, Methyl-Ethyl-Keton] method. In case of purely air-jet cooling, the micro-porous coating doesn't affect the cooling capacity. In spray cooling three different flow patterns (complete wetting, evaporative wetting, dryout) are observed on both plain and micro-porous coated surfaces. The effects of various operating conditions, such as water flow rate, particle size, and coating thickness were investigated on the micro-porous coated surfaces. It is found that the level of surface wetting is an important factor to determine the performance of spray cooling. It depends on the balance between absorbed liquid amount by capillary force over porosity and the evaporative amount. The micro-porous coated surface has largest cooling capacity, especially in the evaporative wetting zone. It is found that the effects of liquid flow rate and coating thickness are significant in evaporative wetting zone, but are not in complete wetting and dryout zones.

Experimental and numerical assessment of helium bubble lift during natural circulation for passive molten salt fast reactor

  • Won Jun Choi;Jae Hyung Park;Juhyeong Lee;Jihun Im;Yunsik Cho;Yonghee Kim;Sung Joong Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1002-1012
    • /
    • 2024
  • To remove insoluble fission products, which could possibly cause reactor instability and significantly reduce heat transfer efficiency from primary system of molten salt reactor, a helium bubbling method is employed into a passive molten salt fast reactor. In this regard, two-phase flow behavior of molten salt and helium bubbles was investigated experimentally because the helium bubbles highly affect the circulation performance of working fluid owing to an additional drag force. As the helium flow rate is controlled, the change of key thermal-hydraulic parameters was analyzed through a two-phase experiment. Simultaneously, to assess the applicability of numerical model for the analysis of two-phase flow behavior, the numerical calculation was performed using the OpenFOAM 9.0 code. The accuracy of the numerical analysis code was evaluated by comparing it with the experimental data. Generally, numerical results showed a good agreement with the experiment. However, at the high helium injection rates, the prediction capability for void fraction of helium bubbles was relatively low. This study suggests that the multiphaseEulerFoam solver in OpenFOAM code is effective for predicting the helium bubbling but there exists a room for further improvement by incorporating the appropriate drag flux model and the population balance equation.

Stability analysis in BWRs with double subdiffusion effects: Reduced order fractional model (DS-F-ROM)

  • Gilberto Espinosa-Paredes;Ricardo I. Cazares-Ramirez;Vishwesh A. Vyawahare;Erick-G. Espinosa-Martinez
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1296-1309
    • /
    • 2024
  • The aim of this work is to explore the effect of the double subdiffusion on the stability in BWRs. A BWR novel reduced order model with double subdiffusion effects: reduced order fractional model (DS-F-ROM) to describe the neutron and heat transfer processes was proposed for this study. The double subdiffusion was developed with a fractional-order two-equation model, and with different fractional-orders and relaxation times. The stability analysis was carried out using the root-locus method and change from the s to the W domain and were confirmed using the time-domain evolution of neutron flux for a unit step change in reactivity. The results obtained using the reduced fractional-order model are presented for different anomalous diffusion coefficient values. Results are compared with normal diffusion and P1 equations, which are obtained straightforwardly with DS-ROM when relaxation time tends to zero, and when the anomalous diffusion coefficient tends to one, respectively.

Evaluation of Thermal Insulation and Hypothermia for Development of Life Raft (해상 구명정의 단열성능평가 및 저체온증 예측 수치해석 연구)

  • Hwang, Se-Yun;Jang, Ho-Sang;Kim, Kyung-Woo;Lee, Jang-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.39 no.6
    • /
    • pp.485-491
    • /
    • 2015
  • The technology review about risk of hypothermia of victim according to heat transfer characteristic of life raft and sea state can use accident correspondence of standing and sinking of ship. This study studied heat transfer characteristics required for the design of life raft and thermal insulation property analysis and evaluation methods. In addition, it is study for comprehend the risk of hypothermia and suggest analysis result that is experiment of thermal insulation property and body temperature property for decide of prediction the body temperature decline Thermal Analysis apply the finite element analysis method is comprehended the property of heat conductivity, convective effect of sea water and properties changes according to property of insulation material. it measure the heat flux with attach temperature sensor on body in order to comprehend the variation of body temperature with boarding a life raft experiment on a human body. This study validate results by comparing variation of temperature measured from experiment on a body with variation of temperature from finite element analysis model. Also, the criteria of hypothermia was discussed through result of finite element analysis.

Experimental Studies of the Short-Term Fluctuations of Net Photosynthesis Rate of Norway Spruce Needles under Field Conditions (야외조건하(野外條件下)에서 독일가문비(Picea abies Karst) 침엽(針葉)의 순(純) 광합성률(光合成率)의 단기(短期) 변화(變化)에 대한 실험적(實驗的) 연구(硏究))

  • Bolondinsky, V.;Oltchev, A.;Jin, Hyun O.;Joo, Yeong Teuk;Chung, Dong Jun
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.1
    • /
    • pp.38-46
    • /
    • 1999
  • Canopy structure conductances of a Norway spruce forest in the Solling Hills(Central Germany) and Central Forest Biosphere Reserve(320km to the north-west from Moscow) were derived from LE(latent heat flux) and H(sensible heat flux) fluxes measured(by Eddy correlation technique and energy balance method) and modelled(by one dimensional non-steady-state) SVAT(soil-vegetation-atmosphere-transfer) model(SLODSVAT) using a rearranged Penman-Monteith equation("Big-leaf" approximation) during June 1996. They were compared with canopy stomatal conductances estimated by consecutive intergrating the stomatal conductance of individual needles over the whole canopy("bottom-up" approach) using SLODSVAT model. The result indicate a significant difference between the canopy surface conductances derived from measured and modelled fluxes("top-down" approach) and the stomatal conductances modelled by the SLODSVAT("bottom-up" approach). This difference was influenced by some nonphysiological factors within the forest canopy(e.g. aerodynamic and boundary layer resistances, radiation budget, evapotranspiration from the forest understorey). In general, canopy surface conductances derived from measured and modelled fluxes exceeded canopy stomatal conductance during the whole modelled period, The contribution of the understorey's evapotranspiration to the total forest evapotranspiration was small (up to 5-9% of the total LE flux) and was not depended on total radiation balance of forest canopy. Ignoring contribution of the understorey's evapotranspiration resulted in an overestimation of the canopy surface conductance for a spruce forest up to 2mm/s(about 10-15%).

  • PDF

A New Method of Determination for the Trace Ruthenium in High Purity Palladium by Neutron Activation Analysis (방사화 분석에 의한 고순도 팔라듐 금속중의 미량 루테늄에 관한 새로운 정량법)

  • Lee, Chul;Yim, Yung-Chang;Uhm, Kyung-Ja;Chung, Koo-Soon
    • Journal of the Korean Chemical Society
    • /
    • v.15 no.4
    • /
    • pp.191-197
    • /
    • 1971
  • Ruthenium content in highly purified palladium metal (99.9%) was determined by counting $^{105}Rh$ nuclide which was produced by $^{104}Ru(n,{\gamma};{\beta}^-)^{105}Rh$ nuclear reaction. Palladium sample and ruthenium standard were irradiated by neutron with the Pneumatic Transfer System of TRIGA MARK II reactor. Palladium and ruthenium were dissolved by treating with aqua-regia and by fusing with sodium peroxide flux respectively. $^{105}Rh$ was separated through anion and cation exchange resin columns. The ruthenium content was determined by comparing the $^{105}Rh$ activities, obtained from the palladium sample, with that from pure ruthenium standard. The detection limit of ruthenium by the present method is about 1 ppm of ruthenium in 10 mg of palladium, which is approximately 40 times more sensitive than that of the conventional radioactivation method which employs $^{102}Ru(n,{\gamma})^{103}Ru$ nuclear reaction.

  • PDF