• 제목/요약/키워드: flux switching

검색결과 204건 처리시간 0.024초

New ZVZCT Bidirectional DC-DC Converter Using Coupled Inductors

  • Qian, Wei;Zhang, Xi;Li, Zhe;Jin, Wenqiang;Wiedemann, Jochen
    • Journal of Power Electronics
    • /
    • 제19권1호
    • /
    • pp.11-23
    • /
    • 2019
  • In this study, a novel zero voltage zero current transition (ZVZCT) bidirectional DC-DC converter is proposed by employing coupled inductors. This converter can turn the main switch on at ZVZCT and it can turn it off with zero voltage switching (ZVS) for both the boost and buck modes. These characteristics are obtained by using a simple auxiliary sub-circuit regardless of the power flow direction. In the boost mode, the auxiliary switch achieves zero current switching (ZCS) turn-on and ZVS turn off. Due to the coupling inductors, this converter can make further efficiency improvements because the resonant energy in the capacitor or inductor can be transferred to the load. The main diode operates with ZVT turn-on and ZCS turn-off in the boost mode. For the buck mode, there is a releasing circuit to conduct the currents generated by the magnetic flux leakage to the output. The auxiliary switch turns on with ZCS and it turns off with ZVT. The main diode also turns on with ZVT and turns off with ZCS. The design method and operation principles of the converter are discussed. A 500 W experimental prototype has been built and verified by experimental results.

Neural network based direct torque control for doubly fed induction generator fed wind energy systems

  • Aftab Ahmed Ansari;Giribabu Dyanamina
    • Advances in Computational Design
    • /
    • 제8권3호
    • /
    • pp.237-253
    • /
    • 2023
  • Torque ripple content and variable switching frequency operation of conventional direct torque control (DTC) are reduced by the integration of space vector modulation (SVM) into DTC. Integration of space vector modulation to conventional direct torque control known as SVM-DTC. It had been more frequently used method in renewable energy and machine drive systems. In this paper, SVM-DTC is used to control the rotor side converter (RSC) of a wind driven doubly-fed induction generator (DFIG) because of its advantages such as reduction of torque ripples and constant switching frequency operation. However, flux and torque ripples are still dominant due to distorted current waveforms at different operations of the wind turbine. Therefore, to smoothen the torque profile a Neural Network Controller (NNC) based SVM-DTC has been proposed by replacing the PI controller in the speed control loop of the wind turbine controller. Also, stability analysis and simulation study of DFIG using process reaction curve method (RRCM) are presented. Validation of simulation study in MATLAB/SIMULINK environment of proposed wind driven DFIG system has been performed by laboratory developed prototype model. The proposed NNC based SVM-DTC yields superior torque response and ripple reduction compared to other methods.

Torque Ripple Reduction in Three-Level Inverter-Fed Permanent Magnet Synchronous Motor Drives by Duty-Cycle Direct Torque Control Using an Evaluation Table

  • Chen, Wei;Zhao, Ying-Ying;Zhou, Zhan-Qing;Yan, Yan;Xia, Chang-Liang
    • Journal of Power Electronics
    • /
    • 제17권2호
    • /
    • pp.368-379
    • /
    • 2017
  • In this paper, a direct torque control algorithm with novel duty cycle-based modulation is proposed for permanent magnet synchronous motor drives fed by neutral-point clamped three-level inverters. Compared with the standard DTC, the proposed algorithm can suppress steady-state torque ripples as well as ensure neutral-point potential balance and smooth vector switching. A unified torque/flux evaluation table with multiple voltage vectors and precise control levels is established and used in this method. This table can be used to evaluate the effects of duty-cycle vectors on torque and flux directly, and the elements of the table are independent of the motor parameters. Consequently, a high number of appropriate voltage vectors and their corresponding duty cycles can be selected as candidate vectors to reduce torque ripples by looking up the table. Furthermore, small vectors are incorporated into the table to ensure the neutral-point potential balance with the numerous candidate vectors. The feasibility and effectiveness of the proposed algorithm are verified by both simulations and experiments.

직접 토크제어의 토크맥동 저감을 위한 속도검출기 없는 유도전동기 제어 시스템 (A Speed Sensorless Induction Motor Control System using Direct Torque Control for Torque Ripple Reduction)

  • 김남훈;김민호;김민회;김동희;황돈하
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 B
    • /
    • pp.986-988
    • /
    • 2001
  • This paper presents a digitally speed sensorless control system for induction motor with direct torque control (DTC). Some drawbacks of the classical DTC are the relatively large torque ripple in a low speed range and notable current pulsation during steady state. They are reflected speed response and increased acoustical noise. In this paper, the DTC quick response are preserved at transient state, while better qualify steady state performance is produced by space vector modulation (SVM). The system are closed loop stator flux and torque observer for wide speed range that inputs are currents and voltages sensing of motor terminal, model reference adaptive control (MRAC) with rotor flux linkages for the speed fuming signal at low speed range, two hysteresis controllers and optimal switching look-up table. Simulation results of the suggest system for the 2.2 [kW] general purposed induction motor are presented and discussed.

  • PDF

대전류 출력형 Flat Transformer 설계 및 해석 기술 (Design and Simulation Technologies of Flat Transformer with High Power Current)

  • 한세원;조한구;우병철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계학술대회 논문집 유기절연재료 전자세라믹 방전플라즈마 일렉트렛트 및 응용기술
    • /
    • pp.15-17
    • /
    • 2002
  • Leakage inductance and temperature rise are two of the more impotent problems facing the magnetic core technology of today's high frequency transformers. Excessive leakage inductance increases the stress on the switching transistors and limits the duty-cycle, and excessive temperature rise can lead the design limitation of high frequency transformer with high current. The flat transformer technology provides a very good solution to the problems of leakage inductance and thermal management for high frequency power. The critical magnetic components and windings are optimized and packaged within a completely assembled module. The turns ratio in a flat transformer is determined as the product of the number of elements or modules times the number of primary turns. The leakage inductance increase proportionately to the number of elements, but since it is reduced as the square of the turns, the net reduction can be very significant. The flat transformer modules use cores which have no gap. This eliminates fringing fluxes and stray flux outside of the core. The secondary windings are formed of flat metal and are bonded to the inside surface of the core. The secondary winding thus surrounds the primary winding, so nearly all of the flux is captured.

  • PDF

Flat Transformer 코아의 설계와 컨버터 동작 특성 (Study on designing of Flat Transformer and operating characteristics of Converter)

  • 한세원;조한구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.587-590
    • /
    • 2003
  • The first attention in designing a transformer for low temperature rise should be to reduce losses. Leakage inductance and temperature rise are two of the more impotent problems facing the magnetic core technology of today's high frequency transformers. Excessive leakage inductance increases the stress on the switching transistors and limits the duty-cycle, and excessive temperature rise can lead the design limitation of high frequency transformer with high current. The flat transformer technology provides a very good solution to the problems of leakage inductance and thermal management for high frequency power. The critical magnetic components and windings are optimized and packaged within a completely assembled module. The turns ratio in a flat transformer is determined as the product of the number of elements or modules times the number of primary turns. The leakage inductance increase proportionately to the number of elements, but since it is reduced as the square of the turns, the net reduction can be very significant. The flat transformer modules use cores which have no gap. This eliminates fringing fluxes and stray flux outside of the core. The secondary windings are formed of flat metal and are bonded to the inside surface of the core. The secondary winding thus surrounds the primary winding, so nearly all of the flux is captured.

  • PDF

직접토크 제어를 이용한 유도전동기의 센서리스 속도제어에 관한 연구 (A Study on the Sensorless Speed Control of Induction Motor using Direct Torque Control)

  • 윤경국;오세진;김종수;김윤식;이성근;김성환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권8호
    • /
    • pp.1261-1267
    • /
    • 2009
  • 직접토크제어는 일정한 히스테리시스 범위 내에서 전동기의 자속과 토크를 제어하는 방법으로서 최적 스위칭 테이블을 사용한 고정자 전압 공간 벡터에 의해 전동기의 자속과 토크를 제어하게 된다. 그리고 본 논문에서 사용한 센서리스 제어법은 실제 전동기와 수식 모델의 전류가 수렴하도록 고정자 전압을 인가하면 실제 전동기 회전자 속도가 속도 지령치인 수식 모델의 회전자 속도에 접근하는 제어방식이다. 이 방식들을 접목하면 PI 제어기가 필요하지 않는 간단하면서도 강인한 제어를 구현할 수 있는데 본 논문에서는 컴퓨터 모의실험을 통해 이의 유효성을 입증한다.

모델기준적응제어 및 직접토크제어 시스템을 이용한 유도전동기의 센서리스 속도제어 (Sensorless Speed Control of Induction Motor using Model Reference Adaptive Control and Direct Torque Control System)

  • 김성환;정범동;윤두오;이성근;오세진
    • 한국정보통신학회논문지
    • /
    • 제16권12호
    • /
    • pp.2708-2715
    • /
    • 2012
  • 본 논문은 모델기준적응제어 및 직접토크제어 방식을 이용한 새로운 유도전동기의 센서리스 속도제어 방법을 제안한다. 모델기준적응제어는 기준모델과 조정모델을 설정하고 이들의 출력을 비교하여 조정모델 및 제어를 위한 속도 추정값을 얻는 제어법이다. 그리고 직접토크제어는 토크와 자속을 독립적으로 제어하는 방법으로 토크, 자속 지령치와 전동기 고정자 전압, 전류 값을 이용해 추정한 토크, 자속을 비교하여 히스테리시스 밴드를 거쳐 그 오차를 가장 최소화하기 위한 전압벡터를 선정하여 출력하는 방법이다. 본 논문에서는 제안한 방식의 이론적인 배경 및 타당성에 대해 기술하였으며 모의실험을 통해 제안된 방식의 우수성을 검증하였다.

정현파 Hall Sensor 신호의 잡음제거를 위한 회로설계 (Circuit Design for Noise Removal of Sine Wave Hall Sensor Signal)

  • 정성인
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권4호
    • /
    • pp.135-141
    • /
    • 2021
  • 산업자동화에 적합한 구형파 구동 BLDC 영구자석 전동기 설계 및 개발, 위치검출방식 회로와 드라이버 개발에 관심이 증가하고 있다. 그러나 이 전동기는 스위칭 손실에 의한 효율 저하 및 진동, 소음 등으로 인하여 가격적·기능적인 장점에도 불구하고 그 응용에 있어서는 다소 제한적인 실정이다. BLDC 모터를 설계하고 조립하는 과정에 있어 자기회로 설계의 문제 또는 조립과정상의 제품 불 균일 등으로 인하여 자극 각이 균일하지 않거나 자속분포가 왜현되는 문제가 발생하는데, 이러한 것들이 위치검출 어긋남의 원인이 되어 모터 특성을 악화시킨다. 또한 위치센서로부터 발생된 신호가 정확히 드라이버로 피드백 되어야만 정현파 구동 BLDC 시스템이 안정적으로 동작할 수 있다. 그러나 발생된 신호가 외부의 영향인 자속밀도 편차나 착자 기술에 의해 DC offset 성분이 발생하여 안정적인 위치검출을 할 수 없기에 본 연구에서는 DC offset 성분을 제거할 수 있는 제안된 회로를 연구하고자 한다.

Fundamental Metrology by Counting Single Flux and Single Charge Quanta with Superconducting Circuits

  • Niemeyer, J.
    • Progress in Superconductivity
    • /
    • 제4권1호
    • /
    • pp.1-9
    • /
    • 2002
  • Transferring single flux quanta across a Josephson junction at an exactly determined rate has made highly precise voltage measurements possible. Making use of self-shunted Nb-based SINIS junctions, programmable fast-switching DC voltage standards with output voltages of up to 10 V were produced. This development is now extended from fundamental DC measurements to the precise determination of AC voltages with arbitrary waveforms. Integrated RSFQ circuits will help to replace expensive semiconductor devices for frequency control and signal coding. Easy-to-handle AC and inexpensive quantum voltmeters of fundamental accuracy would be of interest to industry. In analogy to the development in the flux regime, metallic nanocircuits comprising small-area tunnel junctions and providing the coherent transport of single electrons might play an important role in quantum current metrology. By precise counting of single charges these circuits allow prototypes of quantum standards for electric current and capacitance to be realised. Replacing single electron devices by single Cooper pair circuits, the charge transfer rates and thus the quantum currents could be significantly increased. Recently, the principles of the gate-controlled transfer of individual Cooper pairs in superconducting A1 devices in different electromagnetic environments were demonstrated. The characteristics of these quantum coherent circuits can be improved by replacing the small aluminum tunnel Junctions by niobium junctions. Due to the higher value of the superconducting energy gap ($\Delta_{Nb}$$7\Delta_{Al}$), the characteristic energy and the frequency scales for Nb devices are substantially extended as compared to A1 devices. Although the fabrication of small Nb junctions presents a real challenge, the Nb-based metrological devices will be faster and more accurate in operation. Moreover, the Nb-based Cooper pair electrometer could be coupled to an Nb single Cooper pair qubit which can be beneficial for both, the stability of the qubit and its readout with a large signal-to-noise ratio..

  • PDF