• Title/Summary/Keyword: flux measurements

Search Result 421, Processing Time 0.039 seconds

A Study on Heat Source Model to Creep Feed Grinding (크?피드 연삭에서 열원 모델에 관한 연구)

  • Jeong, Jong-Dal;Jeong, Hae-Do;Choe, Heon-Jong;Kim, Nam-Gyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.171-176
    • /
    • 2001
  • This study focuses on the energy partition and heat flux distribution in creep-feed grinding. From the measurements of transient grinding temperature in the workpiece which the thermocouple was embedded, the overall energy partition to the workpiece was estimated with moving heat source theory using the developed scalene triangle heat model. The energy partition was calculated as 3.75% in down grinding smaller than 5.3% in up grinding. Also, the scalene triangle heat model was confirmed as the most optional heat model in correspond to the experimental data. Then, the heat flux distribution was calculated from temperature responses. The heat flux is negative behind the grinding zone where fluid was applied. In this experimental result, the total heat flow to the workpiece per unit width obtained by integrating the positive heat flux was 0,7W/mm for down grinding.

  • PDF

The Response of soil surface heat budget to the precipitation (지표면 열수지의 강수응답성에 관한 연구)

  • 황수진;진병화
    • Journal of Environmental Science International
    • /
    • v.3 no.2
    • /
    • pp.89-100
    • /
    • 1994
  • It is very important to assess accurately the terms which are included in the heat budget equation of soil surface because they are used in the UM and miso-scale circulation modeling as well as in the micrometeorological studies. Each terms in the heat budget equation change according to the soil moisture content. So, it is necessary to specify clearly the relations between soil moisture content and these terms. Special experiment with micrometeorological measurements was executed to study these relations at Environmental Research Center of Tsukuba University, Japan. The results are as follow: 1. The soil moisture contents of 1 cm and 4 cm depth are oscillated with one day Period in drying process and the amplitude of variation of 1 cm depth is greater than that of 4 cm. 2. Increase in soil moisture contents due to precipitation result in decrease of albedo with step function. 3. Sensible heat is in reverse proportion to the soil moisture content and latent heat is in direct proportion to it. Latent heat is more sensitive than sensible heat according to the soil moisture variation. Net long wave radiation have high correlation with soil moisture. 4. Comparing with the radiative term with the flux term in wetting process due to precipitation, the energy transfer of the aero and thermodynamic flux is greater than that of the radiative heat flux.

  • PDF

The Measurement of Electromagnetic Wave in Power Cable Tunnel of Underground Utility Tunnel (전력구 내 전자기파에 대한 작업 환경 측정)

  • Kang, Dae Kon;Park, Jai Hak
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • Electromagnetic measurements of the power cable tunnel were conducted from August 10 to 20, 2018, in the ${\bigcirc}{\bigcirc}$ city underground utility tunnel. During this period, the average temperature was $31.89^{\circ}C$ and the humidity was 67.56% in power cable tunnel. As a result of the electromagnetic measurement, the highest electric field was 25.3 V/m and the magnetic flux density was $42.6{\mu}T$. The average electric field was 18.56 V/m and the magnetic flux density was $29.32{\mu}T$ in the power cable tunnel. As a result of comparison with the electric equipment technical standard, the electric field in the power cable tunnel was 0.5% of the electric equipment standard and 35.2% of the magnetic flux density. It's similar value that electric field is about robotic vacuum(15.53 V/m), and magnetic flux density is similar value about capsule- type coffee machine ($23.07{\mu}T$). The number of cable lines and the size of the electromagnetic waves were not proportional to each other through comparison of cable lines in the power cable tunnel. It was confirmed that 154 kV, rather than 22.9 kV, could have a greater influence on occupational.

Evaluation of along-channel sediment flux gradients in an anthropocene estuary with an estuarine dam

  • Figueroa, Steven M.;Lee, Guan-hong;Chang, Jongwi;Schieder, Nathalie W.;Kim, Kyeongman;Kim, Seok-Yun;Son, Minwoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.86-86
    • /
    • 2022
  • While estuarine dams can develop freshwater resources and block the salt intrusion, they can result in increased sediment deposition in the estuary. The mechanism of increased sediment deposition in an estuary with an estuary dam is not well understood. To fill this knowledge gap, 7 ADCP measurements of flow and suspended sediment concentration (SSC) were collected along-channel in an estuary with an estuarine dam over a neap-spring cycle. Flow and SSC were used to calculate the sediment flux and sediment flux gradients. The results indicated that the cumulative sediment fluxes at all stations were directed landward. The along-channel sediment flux gradient was negative, which indicated deposition along the channel. The landward mean-flow fluxes were dominant in the deep portion of the channel near the estuary mouth, whereas landward correlation fluxes were dominant in the shallow portion of the channel near the estuarine dam. The tides were the dominant forcing driving the sediment fluxes throughout the estuary.

  • PDF

Measurements of proton beam flux and energy of APEP using foil activation technique

  • Wenlin Li;Qifan Dong;Hantao Jing;Li Ou;Zhixin Tan;Sixuan Zhuang;Qingbiao Wu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.328-334
    • /
    • 2024
  • The activation method of metallic foils is an important technique to measure the flux and energy of proton beams. In this paper, the method was used to measure the CSNS APEP proton flux at seven nominal proton energies ranging from 10 MeV to 70 MeV for beam spot sizes of the 20 mm × 20 mm and 50 mm × 50 mm. The reactions of natTi(p, x)48V, natNi(p, x)57Ni, natCu(p, x)58Co, and 27Al(p, x)24Na were employed to measure the proton beam flux with a range of 107-109 p/cm2/s. Furthermore, we also proposed a method using the activity ratio with a stacked-foil target to determine the energy spread of a Gaussian-like distribution for different nominal proton energies. The optimal combinations of Al, Cu, Ti, Ni, Mo, Fe, Nb, and In foils were adopted for the proton energies. The measured energy spreads for degraded beams of 30 MeV-70 MeV were found to be smaller than 10.00%.

Oxygen Permeability, Electronic and ionic Conductivities and Defect Chemistry of Ceria-Zirconia-Calcia

  • Kawamura, Ken-ichi;Watanabe, Kensuke;Nigara, Yutaka;Kaimai, Atsushi;Kawada, Tatsuya;Mizusaki, Junichiro
    • The Korean Journal of Ceramics
    • /
    • v.4 no.2
    • /
    • pp.146-150
    • /
    • 1998
  • The total conductivity and oxygen permeation in (Ce1-xZrxO2)0.9(CaO)0.1 solid solutions were measure das a function of temperature and oxygen partial pressure. Empirically, σ at given x and T was expressed essentially by σ=σo2+σeo Po2-1/4, where σo2 and σeo are constant. Applying a standard defect model in which major defects are Cace", Cece' and Vo in ideal solution, we can assign σo2 as the oxide ion conductivity decreases while the electronic conductivity increases with the increase in Zr content. Using the oxide ion and electronic conductivities thus determined, the oxygen permeation flux was calculated for respective Po2 and T conditions at which the measurements were made. The calculated values were found to agree with the observed ones.

  • PDF

On the Thermal Effect of Vegetation Canopy to the Surface Sublayer Environment (Vegetation Canopy의 접지층 환경에 대한 열적 영향 제2부 : 벼 식피층 관측)

  • 진병화;황수진
    • Journal of Environmental Science International
    • /
    • v.8 no.2
    • /
    • pp.151-154
    • /
    • 1999
  • To verify the accuracy of the numerical experiment of Part I, measurements at the matured rice canopy located around Junam reservoir were performed at August 14, 1995. According to the measured data, the foliage temperature recorded the highest value, and the ground temperature was the lowest around noon, and these results coincided with those of the numerical experiment using the combined model of Part I. From the estimation using measured data, the maximum value of the latent heat flux was 380$Wm^2$, the highest value among energy balance terms, and the energy redistribution ratio of the latent heat flux was averaged as 0.5, the highest values among redistribution ratios. These results are the same as those of the numerical experiment in tendency, but they reveals a little lower in the absolute values than those from the numerical experiment.

  • PDF

Energy Partition to Workpiece in Creep feed Grinding (크맆피드연삭에서 공작물로 유입되는 에너지 비율)

  • 홍순익
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.6
    • /
    • pp.42-48
    • /
    • 1998
  • This paper is concerned with the heat flux distribution and energy partition for creep-feed grinding. From measurements of transient grinding temperatures in the workpiece sub-surface using an embedded thermocouple, the overall energy partition to the workpiece was estimated from moving heat source theory for a triangular heat flux distribution as 3.0% for down grinding and 4.5% for up grinding. The higher energy partition for up grinding can be attribute to the need to satisfy thermal compatibility at the grinding zone. The influence of cooling outside the grinding zone can be analytically taken into account by specifying convective heat transfer coefficients on the workpiece surface ha ahead of the heat source (grinding zone) and hb behind the heat source. The smaller energy partition together with slightly lower grinding power favors down grinding over up grinding.

  • PDF

Energy Partition to Workpiece in Creep feed Grinding (크리피드연삭에서 공작물로 유입되는 에너지 비율)

  • 김남경;박호성;홍순익;송지복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.799-804
    • /
    • 1997
  • This paper is concerned with the heat flux distribution and energy partition for creep-feed grinding. Form measurements of transient grinding temperatures in the workpiece sub-surface using an embeded thermocouple, the overall energy partition to the workpiece was estimated form moving heat source theory for a triangular heat flux distribution as 3.0% for down grinding and 4.5% for up grinding. The higher energy partition for up grinding can be attributed to the need to satisfy thermal compatibility at the grinding zone. The influence of cooling outside the grinding zone can be analytically taken into account by specifying convective heat transfer coefficients on the workpiecs surface h /sab a/ heat source (grinding zone) and h /sab b/ behind the heat source. The smaller energy patition together with slightly lower grinding power favors down grinding over up grinding.

  • PDF

Magnetic Suspension Effect of BiPbSrCaCuO Superconducting Bulk (BiPbSrCaCuO 초전도 벌크의 Magnetic Suspension)

  • 이상헌
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.5
    • /
    • pp.545-551
    • /
    • 2004
  • Magnetic suspension effect has been studied by using superconductor of BiPbSrCaCuO ceramics containing Ag$_2$O. Magnetic flux measurements of a toroidal magnet revealed a concave shaped field distribution with a null field along the axis of the torus at the point where the field reversed. The suspension effect was observed only for the Ag$_2$O doped and field cooled sample which is attributed to the enhanced flux pinning due to the field cooled condition. It has been cleared that Ag$_2$O acts as pinning center which plays an important role to the magnetic suspension effect. Magnetic repulsive force which affects a superconductor located in magnetic flux from toroidal magnet has been investigated. It has been concluded that the magnetic suspension effect arises from the interaction between the pinning effect and the diamagnetic effect.