• Title/Summary/Keyword: flux guide

Search Result 56, Processing Time 0.028 seconds

Automation of Longline -Magnetic Splitting Machine for Hooks- I- (주낙 어구의 자동화 -전자식 낚시 분리장치에 관한 연구- I-)

  • LEE Chun-Woo;KO Kwan-Soh
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.19 no.2
    • /
    • pp.93-99
    • /
    • 1986
  • A longline is made of many snoods with baited hooks which are connected to mainline at constant intervals. Hauling the mainline, removing the unused baits and the hooked fish, and the arrangement of hooks are dependent on mainly manual labour as compared with mechanized other fishing gear in fishing operation. The mechanization for longline operation is needed in order to eliminate the manual handling and to shorten the labour time. The magnetic hook splitting apparatus which consists of the hook separator and the guide leading to storage magazine rail was devised for the mechanization of hauling operation. The experiments were carried out in order to measure the splitting rate of hooks in accordance with the hauling speed of mainline and magnetic flux density of splitting apparatus from February to November, 1985. The splitting rate was $94\%$ for the Alaska pollack (Theragra chalcogramma) hook and $96\%$ for the halibut (Paralichthys olivaceus) hook at the hauling speed 24 m/min and magnetic flux density 482 gauss. The unsplitting of hooks was caused by entangling snood in the mainline and low magnetic flux density. The rate is greater the faster hauling speed and the lower magnetic flux density, with an average of about $6\%$, The magnetic flux density needed to hook splitting becomes increased with the increasing hauling speed. When the practical hauling speed is from 20 to 35m/min, the magnetic flux density is needed from 400 to 850 gauss.

  • PDF

A Study on the Effects of Rotation Rate and Flow Rate on the Operating Characteristics in Centrifugal Pump (원심펌프에서 회전수 및 유량변화가 운전특성에 미치는 영향)

  • Lim, Kwang-Mook;Lee, Sung-Ill
    • Fire Science and Engineering
    • /
    • v.33 no.3
    • /
    • pp.56-62
    • /
    • 2019
  • This study examined effects of the operating characteristics of a pump according to the rotational speed of a pump and the change in flow rate when a centrifugal pump operates under the following conditions: regulated flow rate, head, rotational speed, and specific speed of 0.7 m/min, 8 m, 1750 rpm, an 182 (m, ㎥/min, rpm), respectively. The pump in the experiment did not have a guide vane and was connected directly to the rim, so that the rotational speed of the volute pump in a spiral or volute casing increased by 100 rpm from 1350 to 1750 rpm. The result of the relationship between the H-Q, L-Q, and 𝜂-Q characteristics and the dimensionless performance characteristics, such as the head coefficient, power coefficient and efficiency were studied. The change in pump performance could be estimated depending on the increase in the number of revolutions. The maximum efficiency of the pump was 52% with 1450 rpm, 0.165 ㎥/min flux, and 4.73 m of lift. The efficiency reached 50% with a maximum of 1750 rpm, 0.183 ㎥/min of flux, and 6.72 m of lift. The efficiency curve on the performance characteristics of the lift versus flux curve became oval not a curve from a quadratic equation that passes through the starting point according to the similarity law of the pump. Finally, when the flux coefficient increased, the power coefficient increased and the lift coefficient decreased. When the flux coefficient was 0.08, the maximum efficiency was 52%. Therefore, the change in flux affects the driving characteristics.

Design and Analysis of A Mini Linear Optical Pickup Actuator

  • Park, Joon-Hyuk;Baek, Yoon-Su;Park, Young-Pil
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1616-1627
    • /
    • 2003
  • This paper describes a mini linear optical pickup actuator. To reduce the size, inner yokes are designed to guide the mover and outer yokes of permanent magnets are removed. Magnetic circuit method is used to determine the thrust force. Virtual path method is proposed to analyze the open magnetic circuit analysis. The magnetic circuit of the proposed actuator can be a closed circuit due to the virtual path model of the outer magnetic flux. The validity of virtual path method is evaluated by comparing to the FEM analysis. Structural vibration is investigated using FEM and the design of the mover is modified to improve the vibration characteristic. Dynamic characteristic experiments shows that the performance of the proposed actuator is enough to be used as a coarse and fine seeking actuator simultaneously and the thrust force margin for loading a focusing actuator is guaranteed.

Migration Characteristics in Sine-Wave Type Rivers (정현파형하천의 이행특성)

  • 차영기;배동만
    • Water for future
    • /
    • v.25 no.2
    • /
    • pp.79-87
    • /
    • 1992
  • This study is a model on the Migration Characteristics which developed by using the equations for conservation of mass, momentum and for lateral stability of the streambed, an the model can be examined for magnitude and location of near-bank bed scour as well as rates and direction of meander migration in which sine-Wave type rivers(SWR) of the small sinuosity. It is evident from this study that the transverse bed slope factor B' and transverse mass flux factor $ play significient roles, and show reasonable that the values are B'=4.0 and $=0.4 respectively . It will be a useful guide in planning, design, construction, and development of SWR river-basin projects.

  • PDF

Speed Increasing Method of Solenoid Actuator Using a Non-Magnetic Ring (비자성체 링을 사용한 솔레노이드 액츄에이터의 작동속도 향상법)

  • Sung, Baek-Ju;Lee, Eun-Woong;Kim, Hyoung-Eui
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.6-8
    • /
    • 2005
  • The plunger speed of solenoid actuator is affected by mass of plunger, magnetic motive force, inductance, and return spring. These factors are not independent but related with each other according to design characteristics of solenoid actuator. So, it is impossible to change the designed value for the purpose of increasing plunger speed. In this study, we have analyzed the characteristics of high-speed solenoid actuator having a non-magnetic ring which plays a role to concentrate the effective magnetic flux into plunger. For more detailed analysis, we have performed FEM analysis and decided the optimal attaching position and length on the guide tube based on these results. And, we proved the propriety of the non-magnetic ring effect by experiments.

  • PDF

An Experimental Study on Heat Transfer Characteristics of Thermal Diode Type Enclosure Cavity (熱다이오식 밀폐공간의 熱傳達 特性에 關한 實驗的 硏究)

  • 장영근;김석현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.12
    • /
    • pp.1073-1080
    • /
    • 2000
  • Thermal diode is a device which allows heat to be transferred in one direction by convection due to density difference of fluid ,and blocks heat flow in the opposite direction. It is simple in construction and low in cost. And so, it is used as heat collection system of solar energy. In order to acquire a basic design data, thermal diode heat collection system has been studied experimentally for flux Rayleigh numbers from $2\times10^8\;to\;8\times10^8$. The heat transfer rate of this system is shown 10~47% higher than that of other earlier research results. He correlation obtained in this study is Nu=0.0037(Ra^*)^{0.429}(d^*)^{0.05}\frac{(Lr)}{H}^{0.415}$.

  • PDF

Calibrating the stellar velocity dispersion in near-IR

  • Kang, Wol-Rang;Woo, Jong-Hak
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.52.2-52.2
    • /
    • 2011
  • The correlation between black hole mass and galaxy stellar velocity dispersion gives an important clue on the black hole growth and galaxy evolution. In the case of AGN, however, it is extremely difficult to measure stellar velocity dispersions in the optical spectra since AGN continuum dilutes stellar absorption features. In contrast, stellar velocity dispersions of active galaxies can be measured in the near-IR, where AGN-to-star flux ratio is much smaller, particularly with the laser-guide-star adaptive optics. However, it is crucial to test whether the stellar velocity dispersion measured from the near-IR spectra is consistent with that measured from the optical spectra. Using the TripleSpec at the Palomar 5-m Telescope, we obtained high quality spectra ranging from 1 to 2.4 micron for a sample of 35 nearby galaxies, for which dynamical black hole masses and optical stellar velocity dispersion measurements are available, in order to calibrate the stellar velocity dispersion in the near-IR. In this poster, we present the initial results based on 10 galaxies, with the stellar velocity dispersion measured in the H-band.

  • PDF

Characteristic Analysis of PWM Controlled High-Speed Magnet (PWM 제어형 고속 전자석의 특성 해석)

  • Sung, Baek-Ju;Lee, Eun-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1309-1311
    • /
    • 2005
  • The operating speed of PWM controlled high speed magnet is affected by mass of plunger magnetic motive force inductance and return spring It is impossible to change the value of them for the purpose of increasing the speed because these factors are related with each other This paper introduces a speed increasing method using a non magnetic ring which is welded in the middle of magnetic guide tube and also presents the characteristic equations results of FEM analysis for magnetic flux distribution and computer simulation results for the dynamic characteristics of plunger motion And we proved the effect of non magnetic ring by experiments using a prototype

  • PDF

Design of Levitation Magnet with Thermal Analysis (열해석을 이용한 자기부상자석의 설계)

  • Bae, Duck-Kweon;Sung, Ho-Kyung;Yoon, Yong-Soo;Bae, Jun-Han;Jho, Jeong-Min;Kim, Dong-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1185-1186
    • /
    • 2007
  • The UTM-01 developed in 1998 was the first maglev vehicle in Korea for the urban transit maglev (UTM) system. Through the improvement of UTM-01 and development of UTM02, the commercialization of the UTM system is being prepared now. In order to prepare for the commercialization of maglev, it is necessary that an optimal design of the levitation magnet should be provided for the safe operation of the vehicle. The levitation force is formed through the function of magnetic flux density on the top of magnet poles and gap between magnet pole and guide rail. To generate a magnetic field that is high enough to levitate the vehicle, ferromagnetic materials, such as pure iron for magnet pole and SS400 for guide rail, were used. The heat generated by $I^2R$ loss of magnet conductor makes the thermal convection on the surface of magnet including coil and poles. As these two characteristics are nonlinear phenomena, this paper deals with the nonlinear analysis on the magnetic and thermal properties of the U-type levitation magnet by using 3-D finite element method (FEM). Base on the analysis results, a small scale U-type magnet was designed, manufactured, and tested and it was verified that the magnet manufactured was satisfactory to all the design specifications.

  • PDF

Proposing a low-frequency radiated magnetic field susceptibility (RS101) test exemption criterion for NPPs

  • Min, Moon-Gi;Lee, Jae-Ki;Lee, Kwang-Hyun;Lee, Dongil
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1032-1036
    • /
    • 2019
  • When the equipment which is related to safety or important to power production is installed in nuclear power plant units (NPPs), verification of equipment Electromagnetic Susceptibility (EMS) must be performed. The low-frequency radiated magnetic field susceptibility (RS101) test is one of the EMS tests specified in U.S NRC (Nuclear Regulatory Commission) Regulatory Guide (RG) 1.180 revision 1. The RS101 test verifies the ability of equipment installed in close proximity to sources of large radiated magnetic fields to withstand them. However, RG 1.180 revision 1 allows for an exemption of the low-frequency radiated magnetic susceptibility (RS101) test if the safety-related equipment will not be installed in areas with strong sources of magnetic fields. There is no specific exemption criterion in RG 1.180 revision 1. EPRI TR-102323 revision 4 specifically provides a guide that the low-frequency radiated magnetic field susceptibility (RS101) test can be conservatively exempted for equipment installed at least 1 m away from the sources of large magnetic fields (>300 A/m). But there is no exemption criterion for equipment installed within 1 m of the sources of smaller magnetic fields (<300 A/m). Since some types of equipment radiating magnetic flux are often installed near safety related equipment in an electrical equipment room (EER) and main control room (MCR), the RS101 test exemption criterion needs to be reasonably defined for the cases of installation within 1 m. There is also insufficient data regarding the strength of magnetic fields that can be used in NPPs. In order to ensure confidence in the RS101 test exemption criterion, we measured the strength of low-frequency radiated magnetic fields by distance. This study is expected to provide an insight into the RS101 test exemption criterion that meets the RG 1.180 revision 1. It also provides a margin analysis that can be used to mitigate the influence of low-frequency radiated magnetic field sources in NPPs.