• Title/Summary/Keyword: flux estimation

Search Result 626, Processing Time 0.025 seconds

ACCURATE ESTIMATION OF GLOBAL LATENT HEAT FLUX USING MULTI-SATELLITE DATA

  • Tomita Hiroyuki;Kubota Masahisa
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.14-17
    • /
    • 2005
  • Global latent heat flux data sets are crucial for many studies such as those related to air-sea interaction and climate variation. Currently, various global latent heat flux data sets are constructed using satellite data. Japanese Ocean Flux data sets with Use of Remote sensing Observations (J-OFURO) includes one of the satellite-derived global latent heat flux data (Kubota et aI., 2000). In this study, we review future development of J-OFURO global latent heat flux data set. In particular, we investigate usage of multi-satellite data for estimating accurate global latent heat flux. Accurate estimation of surface wind speeds over the global ocean is one of key factors for the improved estimation of global latent heat flux. First, we demonstrate improvement of daily wind speed estimation using multi-satellites data from microwave radiometers and scatterometers such as DMSP/SSMI, ERS/AMI, QuikSCAT/SeaWinds, AqualAMSR-E, ADEOS2/AMSR etc. Next, we demonstrate improvement of global latent heat flux estimation using the wind speed data derived from multi-satellite data.

  • PDF

A Novel Position Sensorless Speed Control Scheme for Permanent Magnet Synchronous Motor Drives

  • Won, Tae-Hyun;Lee, Man-Hyung
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.3
    • /
    • pp.125-132
    • /
    • 2002
  • PMSMS (permanent magnet synchronous motors) are widely used in industrial applications and home appliances because of their high torque to inertia ratio, superior power density, and high efficiency. For high performance control, accurate informations about the rotor position is essential. Sensorless algorithms have lately been studied extensively due to the high cost of position sensors and their low reliability in harsh environments. A novel position sensorless speed control for PMSMs uses indirect flux estimation and is presented in this paper. Rotor position and angular velocity are estimated by the proposed indirect flux estimation. Linkage flux and magnetic field flux are calculated by the voltage equations and the measured phase current without any integration. Instead of linkage flux calculation with integral operation, indirect flux and differential magnetic field are used for the estimation of rotor position. A proper rejection technique fur current noise effect in the calculation of differential linkage flux is introduced. The proposed indirect flux detecting method is free from the integral rounding error and linkage flux drift problem, because differential linkage flux can be calculated without any integral operation. Furthermore, electrical parameters of the PMSM can be measured by the proposed TCM (time compression method) for soft starting and precise estimation of rotor position. The position estimator uses accurate electrical parameters that are obtained from the proposed TCM at starting strategy. In the operating region, a proper compensation method fur temperature effect can compensate fir the estimation error from the variation of electrical parameters. The proposed novel position sensorless speed control scheme is verified by the experimental results.

Inductance Estimation of Permanent Magnet Type Transverse Flux Rotating Motor Using Dynamic-Simulation (Dynamic-Simulation을 통한 영구자석형 횡자속 회전기의 인덕턴스 추정)

  • Kim, Kwang-Woon;Kim, Ji-Won;Jung, Yeon-Ho;Lee, Ji-Young;Kang, Do-Hyun;Chang, Jung-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.722-727
    • /
    • 2010
  • This paper presents Dynamic-Simulation to estimate the inductance of a permanent magnet type transverse flux rotating motor by applying the real-time parameter estimation theory. As transverse flux rotating motor has the complex structure, it can be happen to some errors between real value and designed one with respect to the inductance. To reduce this kinds of errors, the real-time parameter estimation theory was applied to dynamic-simulation. And then, By comparing the estimated inductance and designed one, it is realized that the real-time parameter estimation theory can be applied in the permanent magnet type transverse flux rotating motor.

Induction motor sensor less speed control by stator flux oriented method (고정자 자속 기준 제어 방식에 의한 속도검출기 없는 유도전동기 속도 제어 시스템)

  • Park, Min-Ho;Kim, Kyoung-Seo;Kim, Heui-Wook
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.268-272
    • /
    • 1989
  • To avoid the use of position sensor or flux sensor in a field oriented induction machine drive system, the terminal quantities are often used to estimate the rotor flux. Since the estimation involves the leakage inductance of the machine, the performance of such systems is sensitive to the variations of leakage. Since estimation of the stator flux is independent of the leakage, the steady state performance of the stator flux oriented system is insensitive to the leakage inductance. In this paper, the torque response of stator flux oriented system is compared to that of rotor flux oriented system by digital simulation. And induction motor sensor less speed control by stator flux oriented method is developed. The performance of the speed estimation is showed by digital simulation.

  • PDF

Improved Input Voltage Sensorless Control of Three-Phase AC/DC PWM PFC Converter using Virtual Flux Observer (가상자속관측기를 이용한 3상 AC/DC PWM PFC 컨버터의 입력전압 센서리스 제어 개선)

  • Kim, Young-Sam;So, Sang-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.566-574
    • /
    • 2013
  • In this paper, direct power control system for three-phase PFC AC/DC converter without the source voltage sensors is proposed. The sinusoidal input current and unity effective power factor are realised based on the estimated flux in the observer. Both active and reactive power calculated using estimated flux. The estimation of flux is performed based on the reduced-order virtual flux observer using the actual currents and the command control voltage. Moreover, source voltage sensors are replaced by a estimated flux. DC output voltage has been compensated by DC output ripple voltage estimation algorithm. The active and reactive powers estimation are performed based on the estimated flux and Phase angle. The proposed algorithm is verified through simulation and experiment.

Sensorless Speed Control of PMSM using Stator Flux Estimation and PLL (고정자 자속 추정과 PLL을 이용한 동기모터의 센서리스 속도 제어)

  • Kim, Min Ho;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.2
    • /
    • pp.35-40
    • /
    • 2015
  • This paper presents the sensorless position control of the Permanent Magnet Synchronous Motor (PMSM) using stator flux estimation and Phase Lock Loop (PLL). The field current and the torque current are required in order to perform the vector control of the PMSM. At this time, it is necessary for the torque to know the exact position of the magnetic flux generated by the permanent magnet, because the torque must be applied torque current in the direction orthogonal to the permanent magnet. In general the speed of the PMSM is controlled by using a magnetic position sensor. However, this paper, we estimates the stator flux by using the PLL method without the magnetic position sensor. This method is simple and easy, in addition it has the advantage of a stabile estimation of the rotor. Finally the proposed algorithm was confirmed by experimental results and showed the good performance.

Improvement of rotor flux estimation performance of induction motor using Support Vector Machine $\epsilon$-insensitive Regression Method (Support Vector Machine $\epsilon$-insensitive Regression방법을 이용한 유도전동기의 회전자 자속추정 성능개선)

  • Han, Dong-Chang;Baek, Un-Jae;Kim, Seong-Rak;Park, Ju-Hyeon;Lee, Seok-Gyu;Park, Jeong-Il
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.43-46
    • /
    • 2003
  • In this paper, a novel rotor flux estimation method of an induction motor using support vector machine(SVM) is presented. Two veil-known different flux models with respect to voltage and current are necessary to estimate the rotor flux of an induction motor. The theory of the SVM algorithm is based on statistical teaming theory. Training of SVH leads to a quadratic programming(QP) problem. The proposed SVM rotor flux estimator guarantees the improvement of performance in the transient and steady state in spite of parameter variation circumstance. The validity and the usefulness of Proposed algorithm are throughly verified through numerical simulation.

  • PDF

Adaptive Flux Observer with On-line Inductance Estimation of an Interior PM Synchronous Machine Considering Magnetic Saturation

  • Jeong, Yu-Seok;Lee, Jun-Young
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.188-197
    • /
    • 2009
  • This paper presents an adaptive flux observer to estimate stator flux linkage and stator inductances of an interior permanent-magnet synchronous machine considering magnetic saturation. The concept of static and dynamic inductances due to saturation is introduced in the machine model to describe the relationship between current and flux linkage and the relationship between their time derivatives. A flux observer designed in the stationary reference frame with constant inductance is analyzed in the rotor reference frame by a frequency-response characteristic. An adaptive algorithm for an on-line inductance estimation is proposed and a Lyapunov-based analysis is given to discuss its stability. The dynamic inductances are estimated by using Taylor approximation based on the static inductances estimated by the adaptive method. The simulation and experimental results show the feasibility and performance of the proposed technique.

A Study on the Flux Estimation Simulator Application for the Induction Motor Speed Control (속도제어를 위한 유도전동기 자속추정 시뮬레이터 적용에 관한 연구)

  • Hwang, Lark-Hoon;Na, Seung-Kwon;Choi, Gi-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1289-1301
    • /
    • 2011
  • In this paper, flux estimation method at the Induction motor is applied to stability flux estimate of possibility in overall speed domain. angle operation has voltage and current and speed information using the Induction motor direct control method. Induction motor direct control is material to flux information. Exact flux estimation method to using current model flux estimator of low-speed domain and voltage model flux estimator of high-speed domain. Speed and current and flux controller using PI controller. And error of integral requital for add to Anti-Windup PI controller. Verified to performance of Current model Flux controller and voltage model flux controller using Matlab / Simulink. Analysis has parameter influence of direct vector control and indirect vector control at the Induction motor vector control. So, verified to minute control. Analyzed to simulation result and proof to validity of presented algorithm.

Displacement-Sensorless Control of Magnetic Bearing System using Current and Magnetic Flux Feedback (전류와 자속의 궤환에 의한 자기베어링 시스템의 센서가 없는 변위 제어)

  • Lee, Jun-Ho;Gang, Min-Su;Jeong, Yong-Un;Lee, Jeong-Seok;Lee, Gi-Seo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.7
    • /
    • pp.339-345
    • /
    • 2000
  • This paper deals with the displacement estimation of magnetically suspended simple 1 DOF(degree of freedom) system without the displacement sensor. Inherently electro-magnet for control has two natural feedback loops. One is the transfer function which represents the dependance of the amount of the magnetic flux on the gap displace-ments. The other is the transfer function expressing the properties that the back electromotive force is derived from the time derivative of the magnetic flux. Through these two feedback loops, information about the gap length can be represented by the magnetic flux and the coil current. This means that the gap length can be detected from these two states variables of the electromagnet without a displacements sensor(self-sensing). The displacement can be estimated with the magnetic flux subtracted by the coil current. In this paper we use a balance beam in order to deal with the displacement sensorless estimation of the magnetic bearing system. For the stable estimation of the gap displacements by using the method of self-sensing simple PD controller is used. We first show the mathematical model of the balance beam, and then we show the effectiveness of the current and flux feedback for making stable estimation of the gap displacements for the balance beam. Simulation results show the effectiveness of the current and flux feedback for good estimation of the displacement without using displacement sensor.

  • PDF