• Title/Summary/Keyword: flux enhancement

Search Result 255, Processing Time 0.024 seconds

Quantifying Climate Regulation of Terrestrial Ecosystems Using a Land-Atmosphere Interaction Model Over East Asia for the Last Half Century

  • Hong, Seungbum;Jang, Inyoung;Jeong, Heon-Mo
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.1 no.1
    • /
    • pp.58-67
    • /
    • 2020
  • Terrestrial ecosystems influence climate change via their climate regulation function, which is manifested within the carbon, water, and energy circulation between the atmosphere and surface. However, it has been challenging to quantify the climate regulation of terrestrial ecosystems and identify its regional distribution, which provides useful information for establishing regional climate-mitigation plans as well as facilitates better understanding of the interactions between the climate and land processes. In this study, a land surface model (LSM) that represents the land-atmosphere interactions and plant phenological variations was introduced to assess the contributions of terrestrial ecosystems to atmospheric warming or cooling effects over East Asia over the last half century. Three main climate-regulating components were simulated: net radiation flux, carbon exchange, and moisture flux at the surface. Then, the contribution of each component to the atmospheric warming or cooling (negative or positive feedback to the atmosphere, respectively) was investigated. The results showed that the terrestrial ecosystem over the Siberian region has shown a relatively large increase in positive feedback due to the enhancement of biogeochemical processes, indicating an offset effect to delay global warming. Meanwhile, the Gobi Desert shows different regional variations: increase in positive feedback in its southern part but increase in negative one in its eastern part, which implies the eastward movements of desert areas. As such, even though the LSM has limitations, this model approach to quantify the climate regulation is useful to extract the relevant characteristics in its spatio-temporal variations.

Numerical Simulation of Turbulent Heat Transfer in a Channel with One Wavy Wall (파형벽면이 있는 채널내의 난류열전달에 대한 수치해석)

  • Park Tae-Seon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.3
    • /
    • pp.49-59
    • /
    • 2005
  • Turbulent heat transfer over a fully-developed wavy channel is investigated by a turbulence model. The nonlinear k- f - f$_{ model of Park et at.[1] is slightly modified and their explicit algebraic heat flux model is employed. The Reynolds number is fixed at Re$_{b}$=6760 and the wave configuration is varied in the range of 0 $\leq$ $\alpha$/$\lambda$$\leq$0.15 and 0.25 $\leq$A/H$\leq$4.0. In order to verify model performances, a large eddy simulation is performed for the selected cases. The model performance is shown to be generally satisfactory. By using k- $\varepsilon$ - f$_{ model, the enhancement of heat transfer and the characteristics of turbulent flow in wavy wall are investigated. Finally, the influence of wavy configuration on heat transfer is scrutinized.

Heat Transfer Characteristics of R-1270 using 12.7mm Inner Fin Tube (12.7mm 내면핀관을 이용한 R-1270의 열전달 특성)

  • Yoon, Jung-In;Seong, Gwang-Hoon;Shim, Gyu-Jin;Jin, Byoung-Ju;Baek, Seung-Moon;Moon, Choon-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.534-541
    • /
    • 2008
  • This paper deals with the heat transfer characteristics of R-290 (Propane), R-600a (Iso-butane) and R-1270 (Propylene) as an environment friendly refrigerant and R-22 as a HCFC's refrigerant for evaporating. The experimental apparatus has been set-up as conventional vapor compression type refrigeration and air-conditioning system. The test section is a horizontal double pipe heat exchanger. Evaporating heat transfer measurements were performed for smooth tube with the outer diameters of 12.70, 9.52 and 6.35 mm and micro-fin tube 12.70 mm, respectively. For the smooth and micro-fin tubes measured in this study, the evaporating heat transfer coefficient was enhanced according to the increase of the mass flux and decrease of the tube diameter. The local evaporating heat transfer coefficients of hydrocarbon refrigerants were superior to those of R-22 and the maximum increasing rate of heat transfer coefficient was found in R-1270. The average evaporating heat transfer coefficients in hydrocarbon refrigerants showed 20 to 28% higher values than those of R-22. Also, the evaporating heat transfer coefficients of R-22 in the tube diameter of the 12.70 mm smooth and micro-fin tube were compared. Generally, the local heat transfer coefficients for both types of tubes increased with an increase of the mass flux. The heat transfer enhancement factor (EF) between smooth and micro-fin tube varied from 1.9 to 2.7 in all experimental conditions.

Effect of Polymeric Surfactant on the Separation of 1-Naphthylamine by Micellar Enhanced Ultrafiltration Membranes (고분자형 계면활성제가 마이셀 촉진 한외여과법에 의한 1-나프틸 아민의 제거에 미치는 영향)

  • Youngkook Choi;Soobok Lee;Minok Koo;Yutaka Ishigami;Toshio Kajiuchi
    • Membrane Journal
    • /
    • v.7 no.3
    • /
    • pp.131-135
    • /
    • 1997
  • Polymeric micellar enhanced ultrafiltration method using a new type of polyrmer, $\alpha$-allyl-$\omega$-methoxy polyoxyethlene and maleic anhydride copolymer (AKM-0531, Mw 15, 000), has been proposed to separate 1-naphthylamine as a weak cationic toxic organic solubilizate. Enhancement effect of polymeric micelle was identified by the ultrafiltration runs using polyacryronitrile(PAN) holow fiber membrane with molecular weight cut off 6, 000. The linear dependance of flux on the pressure difference is shown to be valid up to 0.6kg/${cm}^2$ and the rate of flux increase in response to change in the pressure is gradually reduced under the pressure difference. Rejection of 0.96 was observed for f mM of 1-naphthylamine with 2 wt.% polymer solution at the conditions of 0.4kg/${cm}^2$, natural pH. and $25^{\circ}C$ Solubilization of 1-naphthylamine into the polymeric micelle enhanced the separation efficiency.

  • PDF

Magnetotransport of Be-doped GaMnAs (GaMnAs의 Be 병행 도핑에 의한 자기 수송 특성 연구)

  • Im W. S.;Yoon T. S.;Yu F. C.;Gao C. X.;Kim D. J.;Ibm Y. E.;Kim H. J.;Kim C. S.;Kim C. O.
    • Korean Journal of Materials Research
    • /
    • v.15 no.1
    • /
    • pp.73-77
    • /
    • 2005
  • Motivated by the enhanced magnetic properties of Mg-codoped GaMnN ferromagnetic semiconductors, Be-codoped GaMnAs films were grown via molecular beam epitaxy with varying Mn flux at a fixed Be flux. The structural, electrical, and magnetic properties were investigated. GaAs:(Mn,Be) films showed metallic behavior while GaAs:Mn films showed semiconducting behavior as determined by the temperature dependent resistivity measurements. The Hall-effect measurements with varying magnetic field showed clear anomalous Hall effect up to room temperature proving ferromagnetism and magnetotransport in the GaAs:(Mn,Be) films. Planar Hall resistance measurement also confirmed the properties. The dramatic enhancement of the Curie temperature in GaMnAs system was attributed to Be codoping in the GaMnAs films as well as MnAs precipitation.

Photoluminescence Enhancement of Y2O3:Eu3+ Red Phosphor Prepared by Spray Pyrolysis using Aliovalent Cation Substitution and Organic Additives (이가 양이온 금속 친환 및 유기 첨가제를 이용하여 분무열분해법으로 제조된 Y2O3:Eu3+ 적색 형광체의 휘도 개선)

  • Min, Byeong Ho;Jung, Kyeong Youl
    • Journal of Powder Materials
    • /
    • v.27 no.2
    • /
    • pp.146-153
    • /
    • 2020
  • The co-doping effect of aliovalent metal ions such as Mg2+, Ca2+, Sr2+, Ba2+, and Zn2+ on the photoluminescence of the Y2O3:Eu3+ red phosphor, prepared by spray pyrolysis, is analyzed. Mg2+ metal doping is found to be helpful for enhancing the luminescence of Y2O3:Eu3+. When comparing the luminescence intensity at the optimum doping level of each Mg2+ ion, the emission enhancement shows the order of Zn2+ ≈ Ba2+ > Ca2+ > Sr3+ > Mg2+. The highest emission occurs when doping approximately 1.3% Zn2+, which is approximately 127% of the luminescence intensity of pure Y2O3:Eu3+. The highest emission was about 127% of the luminescence intensity of pure Y2O3:Eu3+ when doping about 1.3% Zn2+. It is determined that the reason (Y, M)2O3:Eu3+ has improved luminescence compared to that of Y2O3:Eu3+ is because the crystallinity of the matrix is improved and the non-luminous defects are reduced, even though local lattice strain is formed by the doping of aliovalent metal. Further improvement of the luminescence is achieved while reducing the particle size by using Li2CO3 as a flux with organic additives.

Heat Transfer from Single and Arrays of Impinging Water Jets(II)-1 Row of Impinging Water Jets- (단일수분류 및 수분류군에 의한 열전달(2)-1열 수분류군-)

  • Eom, Gi-Chan;Lee, Jong-Su;Geum, Seong-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.9
    • /
    • pp.1115-1125
    • /
    • 1997
  • Experiments have been conducted to obtain local and average heat transfer coefficients associated with impingement of a row of circular, free surface-water jets on a constant heat flux surface. Nozzle arrays are a row of 3 jets (nozzle dia.=4.6 mm) and a row of 5 jets (nozzle dia.=3.6 mm), and the nozzle configuration is Reverse cone type revealed good performance in heat transfer. Nozzle-to-plate spacings ranging from 16 mm to 80 mm were investigated for two jet center to center spacings 25 mm and 37.5 mm in the jet velocity of 3 m/s (R $e_{D}$=27000) to 8 m/s (R $e_{D}$=70000). For a row of 3 jets and a row of 5 jets, the stagnation heat transfer of the central jet is lower than that of adjacent jets. In the wall jet region between jets, for small nozzle-to-plate spacing and large jet velocity, the local maximum in the Nusselt number was observed, however, for small jet velocity or large nozzle-to-plate spacing, the local maximum was not observed. Except for the condition of $V_{O}$=8 m/s and H/D=10, the average Nusselt number reveals the following ranking: a row of 5 jets, a row of 3 jets, single jet. For a row of 3 jet, the maximum average Nusselt number occurs at H/D=8 ~ 10, and for a row of 5 jets, it occurs at H/D=2 ~ 4. Compared with the single jet, enhancement of average heat transfer for a row of 3 jets is approximately 1.52 ~ 2.28 times, and 1.69 ~ 3.75 times for a row of 5 jets.ets.s.

Pool boiling heat transfer coefficients of alternative refrigerants in enhanced tubes (열전달 촉진관에서 대체냉매의 비등열전달계수)

  • Lee, Jun-Gang;Go, Yeong-Hwan;Jeong, Dong-Su;Song, Gil-Hong;Kim, Jong-Bo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.7
    • /
    • pp.980-991
    • /
    • 1998
  • In this study, nucleate pool boiling heat transfer coefficients of alternative refrigerants on a plain, low fin, and two enhanced tubes were measured and compared against each other. To obtain data at conditions similar to the actual evaporator, a fluid heating method was employed instead of an electric heating method in the experiments. R123, R134a, R22 and R410a were used as working fluids and data were taken at 7 deg.C ar heat fluxes of 20 ~ 100 kW/m$\^$2/. Comparison of the plain tube data against some correlations showed that the simplest correlation of Cooper based on reduced pressure predicted the data for all fluids tested with a 10% deviation. For all refrigerants, enhanced tubes composed of subsurface and subtunnels, especially Thermoexcel-E tube, showed the highest heat transfer coefficients among the tubes tested with one exception that the low fin tube's performance was better than those of enhanced tubes for high vapor pressure fluid such as R410a at high heat flux. Finally, a low fin and enhanced tubes showed higher heat transfer enhancement for low vapor pressure of R123 than for high vapor pressure fluisd. For R123, the enhancement factors for Turbo-B and Thermoexcel-E tubes were 2.8 ~ 4.8 and 4.6 ~ 8.1 respectively.

Zanamivir Oral Delivery: Enhanced Plasma and Lung Bioavailability in Rats

  • Shanmugam, Srinivasan;Im, Ho Taek;Sohn, Young Taek;Kim, Kyung Soo;Kim, Yong-Il;Yong, Chul Soon;Kim, Jong Oh;Choi, Han-Gon;Woo, Jong Soo
    • Biomolecules & Therapeutics
    • /
    • v.21 no.2
    • /
    • pp.161-169
    • /
    • 2013
  • The objective of this study was to enhance the oral bioavailability (BA) of zanamivir (ZMR) by increasing its intestinal permeability using permeation enhancers (PE). Four different classes of PEs (Labrasol$^{(R)}$, sodium cholate, sodium caprate, hydroxypropyl ${\beta}$-cyclodextrin) were investigated for their ability to enhance the permeation of ZMR across Caco-2 cell monolayers. The flux and $P_{app}$ of ZMR in the presence of sodium caprate (SC) was significantly higher than other PEs in comparison to control, and was selected for further investigation. All concentrations of SC (10-200 mM) demonstrated enhanced flux of ZMR in comparison to control. The highest flux (13 folds higher than control) was achieved for the formulation with highest SC concentration (200 mM). The relative BA of ZMR formulation containing SC (PO-SC) in plasma at a dose of 10 mg/kg following oral administration in rats was 317.65% in comparison to control formulation (PO-C). Besides, the $AUC_{0-24\;h}$ of ZMR in the lungs following oral administration of PO-SC was $125.22{\pm}27.25$ ng hr $ml^{-1}$ with a $C_{max}$ of $156.00{\pm}24.00$ ng/ml reached at $0.50{\pm}0.00$ h. But, there was no ZMR detected in the lungs following administration of control formulation (PO-C). The findings of this study indicated that the oral formulation PO-SC containing ZMR and SC was able to enhance the BA of ZMR in plasma to an appropriate amount that would make ZMR available in lungs at a concentration higher (>10 ng/ml) than the $IC_{50}$ concentration of influenza virus (0.64-7.9 ng/ml) to exert its therapeutic effect.

Thermal-Hydraulic Research Review and Cooperation Outcome for Light Water Reactor Fuel (경수로핵연료 열수력 연구개발 분석 및 연산학 협력 성과)

  • In, Wang Kee;Shin, Chang Hwan;Lee, Chi Young;Lee, Chan;Chun, Tae Hyun;Oh, Dong Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.12
    • /
    • pp.815-824
    • /
    • 2016
  • The fuel assembly for pressurized water reactor (PWR) consists of fuel rod bundle, spacer grid and bottom/top end fittings. The cooling water in high pressure and temperature is introduced in lower plenum of reactor core and directed to upper plenum through the subchannel which is formed between the fuel rods. The main thermal-hydraulic performance parameters for the PWR fuel are pressure drop and critical heat flux in normal operating condition, and quenching time in accident condition. The Korea Atomic Energy Research Institute (KAERI) has been developing an advanced PWR fuel, dual-cooled annular fuel and accident tolerant fuel for the enhancement of fuel performance and the localization. For the key thermal-hydraulic technology development of PWR fuel, the KAERI LWR fuel team has conducted the experiments for pressure drop, turbulent flow mixing and heat transfer, critical heat flux(CHF) and quenching. The computational fluid dynamics (CFD) analysis was also performed to predict flow and heat transfer in fuel assembly including the spent fuel assembly in dry cask for interim repository. In addition, the research cooperation with university and nuclear fuel company was also carried out to develop a basic thermal-hydraulic technology and the commercialization.