• Title/Summary/Keyword: flux distribution analysis

Search Result 519, Processing Time 0.031 seconds

Calculation of Nuclear Characteristics of the TRIGA Mark-III Reactor (TRIGA Mark-III 원자로의 노심특성계산)

  • Chong Chul Yook;Gee Yang Han;Byung Jin Jun;Ji Bok Lee;Chang Kun Lee
    • Nuclear Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.264-276
    • /
    • 1981
  • A simulation procedure which can represent time-dependent nuclear characteristics of TRIGA Mark-III reactor is developed. CITATION, a multi-group diffusion-depletion program, has been utilized as calculational tool. The group structure employed in this study consists of 7 groups: -3-fast and 4-thermal-which is conventionally utilized in TRIGA type reactor analysis. Three-dimensional nuclear characteristics are synthesized by combining results from two-dimensional plane calculation and two-dimensional cylinder calculation, since direct three-dimensional approach is not yet possible. An effort ia made to develope a method which can extract effective zone and group dependent bucklings by neutron diffusion theory rather than conventional zone and/or group independent Ducklings by neutron transport theory, since neutron leakage is quite high for small core such as research reactors. It is turned out that the method developed in this study gives satisfactory results. The calculation is performed under assumptions that all control rods are fully withdrawn, that no samples are inserted in the irradiation holes and that the core is located in the center of the reactor pool. Burnup-dependent variation of core excess reactivity, time dependent change of Xe-135 poisoning and reactivity worth of rotary specimen rack are calculated and compared with operation records. Neutron flux and power distribution as well as neutron spectrum in each irradiation .facility are presented.

  • PDF

Correlation Analysis of Signal to Noise Ratio (SNR) and Suspended Sediment Concentration (SSC) in Laboratory Conditions (실험수로에서 신호대잡음비와 부유사농도의 상관관계 분석)

  • Seo, Kanghyeon;Kim, Dongsu;Son, Geunsoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.5
    • /
    • pp.775-786
    • /
    • 2017
  • Monitoring sediment flux is crucial especially for maintaining river systems to understand morphological behaviors. Recently, hydroacoustic backscatter (or SNR) as a surrogate to empirically estimate suspended sediment concentration has been increasingly highlighted for more efficient acquisition of sediment dataset, which is difficult throughout direct sediment sampling. However, relevant contemporary researches have focused on wide range solution applicable for large natural rivers where H-ADCPs with relatively low acoustic frequency have been widely utilized to seamlessly measure streamflow discharge. In this regard, this study aimed at investigating hydroacoustical characteristics based on a very recently released H-ADCP (SonTek SL-3000) with high acoustic frequency of 3 MHz in order to capitalize its capacity to be applied for suspended sediment monitoring in laboratory conditions. SL-3000 was tested in a laboratory flume to collect SNR in conjunction with LISST-100X for actual sediment concentration and particle distribution in both sand and silt sediment injection in various amount. Conventional algorithms to correct signal attenuations for water and sediment were carefully tested to validate whether they can be applied for SL-3000. As result of analyzing the SNR-SSC correlation trand, through further study in the future, it is confirmed that SSC can be observed indirectly by using the SNR.

Structural Characterization of Bismuth Zinc Oxide Thin Films Grown by Plasma-Assisted Molecular Beam Epitaxy (플라즈마분자선에피탁시법으로 성장한 산화비스무스아연 박막의 구조특성)

  • Lim, Dong-Seok;Shin, Eun-Jung;Lim, Se-Hwan;Han, Seok-Kyu;Lee, Hyo-Sung;Hong, Soon-Ku;Joeng, Myoung-Ho;Lee, Jeong-Yong;Cho, Hyung-Koun;Yao, Takafumi
    • Korean Journal of Materials Research
    • /
    • v.21 no.10
    • /
    • pp.563-567
    • /
    • 2011
  • We report the structural characterization of $Bi_xZn_{1-x}O$ thin films grown on c-plane sapphire substrates by plasma-assisted molecular beam epitaxy. By increasing the Bi flux during the growth process, $Bi_xZn_{1-x}O$ thin films with various Bi contents (x = 0~13.17 atomic %) were prepared. X-ray diffraction (XRD) measurements revealed the formation of Bi-oxide phase in (Bi)ZnO after increasing the Bi content. However, it was impossible to determine whether the formed Bi-oxide phase was the monoclinic structure ${\alpha}-Bi_2O_3$ or the tetragonal structure ${\beta}-Bi_2O_3$ by means of XRD ${\theta}-2{\theta}$ measurements, as the observed diffraction peaks of the $2{\theta}$ value at ~28 were very close to reflection of the (012) plane for the monoclinic structure ${\alpha}-Bi_2O_3$ at 28.064 and the reflection of the (201) plane for the tetragonal structure ${\beta}-Bi_2O_3$ at 27.946. By means of transmission electron microscopy (TEM) using a diffraction pattern analysis and a high-resolution lattice image, it was finally determined as the monoclinic structure ${\alpha}-Bi_2O_3$ phase. To investigate the distribution of the Bi and Bi-oxide phases in BiZnO films, elemental mapping using energy dispersive spectroscopy equipped with TEM was performed. Considering both the XRD and the elemental mapping results, it was concluded that hexagonal-structure wurtzite $Bi_xZn_{1-x}O$ thin films were grown at a low Bi content (x = ~2.37 atomic %) without the formation of ${\alpha}-Bi_2O_3$. However, the increased Bi content (x = 4.63~13.17 atomic %) resulted in the formation of the ${\alpha}-Bi_2O_3$ phase in the wurtzite (Bi)ZnO matrix.

Modeling and analysis of dynamic heat transfer in the cable penetration fire stop system by using a new hybrid algorithm (새로운 혼합알고리즘을 이용한 CPFS 내에서의 일어나는 동적 열전달의 수식화 및 해석)

  • Yoon En Sup;Yun Jongpil;Kwon Seong-Pil
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.4 s.21
    • /
    • pp.44-52
    • /
    • 2003
  • In this work dynamic heat transfer in a CPFS (cable penetration fire stop) system built in the firewall of nuclear power plants is three-dimensionally investigated to develop a test-simulator that can be used to verify effectiveness of the sealant. Dynamic heat transfer in the fire stop system is formulated in a parabolic PDE (partial differential equation) subjected to a set of initial and boundary conditions. First, the PDE model is divided into two parts; one corresponding to heat transfer in the axial direction and the other corresponding to heat transfer on the vertical planes. The first PDE is converted to a series of ODEs (ordinary differential equations) at finite discrete axial points for applying the numerical method of SOR (successive over-relaxation) to the problem. The ODEs are solved by using an ODE solver In such manner, the axial heat flux can be calculated at least at the finite discrete points. After that, all the planes are separated into finite elements, where the time and spatial functions are assumed to be of orthogonal collocation state at each element. The initial condition of each finite element can be obtained from the above solution. The heat fluxes on the vertical planes are calculated by the Galerkin FEM (finite element method). The CPFS system was modeled, simulated, and analyzed here. The simulation results were illustrated in three-dimensional graphics. Through simulation, it was shown clearly that the temperature distribution was influenced very much by the number, position, and temperature of the cable stream, and that dynamic heat transfer through the cable stream was one of the most dominant factors, and that the feature of heat conduction could be understood as an unsteady-state process.

  • PDF

Physicochemical properties and sintering behavior of pottery stone as a raw material in porcelain products (국내 도석 광물의 물리화학적 물성 및 도자기 원료로서 소결 특성 평가)

  • Kim, Jong-Young;Kim, Ung-Soo;Hwang, Kwang-Taek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.5
    • /
    • pp.192-202
    • /
    • 2019
  • Physicochemical properties and sintering characteristics of pottery stone (Taebaek, Haenam, Aphae, Haengnam) were evaluated as a raw material for porcelain products. Due to acid leaching procedure, the concentration of iron oxide ($Fe_2O_3$) was decreased to < 1.0 wt%, which affects the whiteness of sintered samples. Mean particle size of acid leached samples is $5.7{\sim}10{\mu}m$ with narrow particle size distribution (PSD), which is lower than that of the pristine ($8{\sim}18{\mu}m$) with broad PSD. According to phase analysis by X-ray diffraction, most of pottery stones (PS) have Quartz phase as a main phase with Pyrophyllite as a second phase, however, Haenam PS shows halloysite phase. The absorption rate was in order of Taebaek (A, B, C)~Aphae (A, B) < Taebaek (Special A) < Haengnam < Haenam, and the samples sintered in reductive atmosphere showed lower absorption rate. This result might be due to the concentration of feldspar contained in PS, working as a flux in sintering process. Comparing the color of the sintered samples, the whiteness of refined PS (Taebaek special A, Haenam, Hangnam) is higher than acid leached PS (Taebaek A/B/C, Aphae A/B). The whiteness (L*) for refined PS is 95~97 %, which is higher than acid leached (82~96 %). This might be due to lower iron oxide concentration of the refined PS (0.11~0.58 %) than those of the acid leached PS (0.41~1.91 %) even though most of iron oxide was removed by acid leaching.

Spatial Distribution of Extremely Low Sea-Surface Temperature in the Global Ocean and Analysis of Data Visualization in Earth Science Textbooks (전구 대양의 극저 해수면온도 공간 분포와 지구과학교과서 데이터 시각화 분석)

  • Park, Kyung-Ae;Son, Yu-Mi
    • Journal of the Korean earth science society
    • /
    • v.41 no.6
    • /
    • pp.599-616
    • /
    • 2020
  • Sea-surface temperature (SST) is one of the most important oceanic variables for understanding air-sea interactions, heat flux variations, and oceanic circulation in the global ocean. Extremely low SSTs from 0℃ down to -2℃ should be more important than other normal temperatures because of their notable roles in inducing and regulating global climate and environmental changes. To understand the temporal and spatial variability of such extremely low SSTs in the global ocean, the long-term SST climatology was calculated using the daily SST database of satellites observed for the period from 1982 to 2018. In addition, the locations of regions with extremely low surface temperatures of less than 0℃ and monthly variations of isothermal lines of 0℃ were investigated using World Ocean Atlas (WOA) climatology based on in-situ oceanic measurements. As a result, extremely low temperatures occupied considerable areas in polar regions such as the Arctic Ocean and Antarctic Ocean, and marginal seas at high latitudes. Six earth science textbooks were analyzed to investigate how these extremely low temperatures were visualized. In most textbooks, illustrations of SSTs began not from extremely low temperatures below 0℃ but from a relatively high temperature of 0℃ or higher, which prevented students from understanding of concepts and roles of the low SSTs. As data visualization is one of the key elements of data literacy, illustrations of the textbooks should be improved to ensure that SST data are adequately visualized in the textbooks. This study emphasized that oceanic literacy and data literacy could be cultivated and strengthened simultaneously through visualizations of oceanic big data by using satellite SST data and oceanic in-situ measurements.

Chemistry of mist deposition of organic polymer PEDOT:PSS on crystalline Si

  • Shirai, Hajime;Ohki, Tatsuya;Liu, Qiming;Ichikawa, Koki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.388-388
    • /
    • 2016
  • Chemical mist deposition (CMD) of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) was investigated with cavitation frequency f, solvent, flow rate of nitrogen, substrate temperature $T_s$, and substrate dc bias $V_s$ as variables for efficient PEDOT:PSS/crystalline (c-)Si heterojunction solar cells (Fig. 1). The high-speed camera and differential mobility analysis characterizations revealed that average size and flux of PEDOT:PSS mist depend on f, solvent, and $V_s$. The size distribution of mist particles including EG/DI water cosolvent is also shown at three different $V_s$ of 0, 1.5, and 5 kV for a f of 3 MHz (Fig. 2). The size distribution of EG/DI water mist without PEDOT:PSS is also shown at the bottom. A peak maximum shifted from 300-350 to 20-30 nm with a narrow band width of ~150 nm for PEDOT:PSS solution, whose maximum number density increased significantly up to 8000/cc with increasing $V_s$. On the other hand, for EG/water cosolvent mist alone, the peak maximum was observed at a 72.3 nm with a number density of ~700/cc and a band width of ~160 nm and it decreased markedly with increasing $V_s$. These findings were not observed for PEDOT:PSS/EG/DI water mist. In addition, the Mie scattering image of PEDOT:PSS mist under white bias light was not observed at $V_s$ above 5 kV, because the average size of mist became smaller. These results imply that most of solvent is solvated in PEDOT:PSS molecule and/or solvent is vaporized. Thus, higher f and $V_s$ generate preferentially fine mist particle with a narrower band width. Film deposition occurred when $V_s$ was impressed on positive to a c-Si substrate at a Ts of $30-40^{\circ}C$, whereas no deposition of films occurred on negative, implying that negatively charged mist mainly provide the film deposition. The uniform deposition of PEDOT:PSS films occurred on textured c-Si(100) substrate by adjusting $T_s$ and $V_s$. The adhesion of CMD PEDOT:PSS to c-Si enhanced by $V_s$ conspicuously compared to that of spin-coated film. The CMD PEDOT:PSS/c-Si solar cell devices on textured c-Si(100) exhibited a ${\eta}$ of 11.0% with the better uniformity of the solar cell parameters. Furthermore, ${\eta}$ increased to 12.5% with a $J_{sc}$ of $35.6mA/cm^2$, a $V_{oc}$ of 0.53 V, and a FF of 0.67 with an antireflection (AR) coating layer of 20-nm-thick CMD molybdenum oxide $MoO_x$ (n= 2.1) using negatively charged mist of 0.1 wt% 12 Molybdo (VI) phosphoric acid n-Hydrate) $H_3(PMo_{12}O_40){\cdot}nH_2O$ in methanol. CMD. These findings suggest that the CMD with negatively charged mist has a great potential for the uniform deposition of organic and inorganic on textured c-Si substrate by adjusting $T_s$ and $V_s$.

  • PDF

Activation Analysis of Dual-purpose Metal Cask After the End of Design Lifetime for Decommission (설계수명 이후 해체를 위한 금속 겸용용기의 방사화 특성 평가)

  • Kim, Tae-Man;Ku, Ji-Young;Dho, Ho-Seog;Cho, Chun-Hyung;Ko, Jae-Hun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.4
    • /
    • pp.343-356
    • /
    • 2016
  • The Korea Radioactive Waste Agency (KORAD) has developed a dual-purpose metal cask for the dry storage of spent nuclear fuel that has been generated by domestic light-water reactors. The metal cask was designed in compliance with international and domestic technology standards, and safety was the most important consideration in developing the design. It was designed to maintain its integrity for 50 years in terms of major safety factors. The metal cask ensures the minimization of waste generated by maintenance activities during the storage period as well as the safe management of the waste. An activation evaluation of the main body, which includes internal and external components of metal casks whose design lifetime has expired, provides quantitative data on their radioactive inventory. The radioactive inventory of the main body and the components of the metal cask were calculated by applying the MCNP5 ORIGEN-2 evaluation system and by considering each component's chemical composition, neutron flux distribution, and reaction rate, as well as the duration of neutron irradiation during the storage period. The evaluation results revealed that 10 years after the end of the cask's design life, $^{60}Co$ had greater radioactivity than other nuclides among the metal materials. In the case of the neutron shield, nuclides that emit high-energy gamma rays such as $^{28}Al$ and $^{24}Na$ had greater radioactivity immediately after the design lifetime. However, their radioactivity level became negligible after six months due to their short half-life. The surface exposure dose rates of the canister and the main body of the metal cask from which the spent nuclear fuel had been removed with expiration of the design lifetime were determined to be at very low levels, and the radiation exposure doses to which radiation workers were subjected during the decommissioning process appeared to be at insignificant levels. The evaluations of this study strongly suggest that the nuclide inventory of a spent nuclear fuel metal cask can be utilized as basic data when decommissioning of a metal cask is planned, for example, for the development of a decommissioning plan, the determination of a decommissioning method, the estimation of radiation exposure to workers engaged in decommissioning operations, the management/reuse of radioactive wastes, etc.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2012 (설비공학 분야의 최근 연구 동향 : 2012년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwataik;Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Choi, Jong Min;Park, Jun-Seok;Kim, Sumin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.6
    • /
    • pp.346-361
    • /
    • 2013
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2012. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. The conclusions are as follows : (1) The research works on thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and valves, fuel cells and power plants, ground-coupled heat pumps, and general heat and mass transfer systems. Research issues are mainly focused on new and renewable energy systems, such as fuel cells, ocean thermal energy conversion power plants, and ground-coupled heat pump systems. (2) Research works on the heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, and industrial heat exchangers. Researches on heat transfer characteristics included the results for natural convection in a square enclosure with two hot circular cylinders, non-uniform grooved tube considering tube expansion, single-tube annular baffle system, broadcasting LED light with ion wind generator, mechanical property and microstructure of SA213 P92 boiler pipe steel, and flat plate using multiple tripping wires. In the area of pool boiling and condensing heat transfer, researches on the design of a micro-channel heat exchanger for a heat pump, numerical simulation of a heat pump evaporator considering the pressure drop in the distributor and capillary tubes, critical heat flux on a thermoexcel-E enhanced surface, and the performance of a fin-and-tube condenser with non-uniform air distribution and different tube types were actively carried out. In the area of industrial heat exchangers, researches on a plate heat exchanger type dehumidifier, fin-tube heat exchanger, an electric circuit transient analogy model in a vertical closed loop ground heat exchanger, heat transfer characteristics of a double skin window for plant factory, a regenerative heat exchanger depending on its porous structure, and various types of plate heat exchangers were performed. (3) In the field of refrigeration, various studies were executed to improve refrigeration system performance, and to evaluate the applicability of alternative refrigerants and new components. Various topics were presented in the area of refrigeration cycle. Research issues mainly focused on the enhancement of the system performance. In the alternative refrigerant area, studies on CO2, R32/R152a mixture, and R1234yf were performed. Studies on the design and performance analysis of various compressors and evaporator were executed. (4) In building mechanical system research fields, twenty-nine studies were conducted to achieve effective design of mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, renewable energy systems, and lighting systems in buildings. New designs and performance tests using numerical methods and experiments provide useful information and key data, which can improve the energy efficiency of buildings. (5) In the fields of the architectural environment, studies for various purposes, such as indoor environment, building energy, and renewable energy were performed. In particular, building energy-related researches and renewable energy systems have been mainly studied, reflecting interests in global climate change, and efforts to reduce building energy consumption by government and architectural specialists. In addition, many researches have been conducted regarding indoor environments.