• Title/Summary/Keyword: flux distribution

Search Result 1,168, Processing Time 0.028 seconds

Reduction of Cogging Torque of BLDC Motors by Realizing Sinusoidal Air-Gap Flux Density Distribution (BLDC 전동기의 정현파 공극 자속밀도 구현에 의한 코깅토오크 저감)

  • Kim, Samuel;Jeong, Seung-Ho;Kwon, Byung-Il;Lee, Chul-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.140-142
    • /
    • 2006
  • Cogging torque is often a principal source of vibration, noise and difficulty of control in permanent-magnet brushless DC motors. Cogging torque can be minimized by sinusoidal air-gap flux density waveform because it is produced by the interaction of the rotor magnetic flux and angular variation in the stator magnetic reluctance. Therefore, this paper will present a design method of magnetization system of bonded isotropic neodynium-iron-boron(Nd-Fe-B) magnets in ring type with sinusoidal air-gap flux density distribution and low manufacturing cost. An analytical technique of magnetization makes use of two-dimensional finite element method(2D FEM) and Preisach model that expresses the hysteresis phenomenon of magnetic materials in order for accurate calculation.

  • PDF

STUDY OF SPECTRAL ENERGY DISTRIBUTION OF GALAXIES WITH PRINCIPAL COMPONENT ANALYSIS

  • Kochi, Chihiro;Nakagawa, Takao;Isobe, Naoki;Shirahata, Mai;Yano, Kenichi;Baba, Shunsuke
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.209-211
    • /
    • 2017
  • We performed Principle Component Analysis (PCA) over 264 galaxies in the IRAS Revised Bright Galaxy Sample (Sanders et al., 2003) using 12, 25, 60 and $100{\mu}m$ flux data observed by IRAS and 9, 18, 65, 90 and $140{\mu}m$ flux data observed by AKARI. We found that (i)the first principle component was largely contributed by infrared to visible flux ratio, (ii)the second principal component was largely contributed by the flux ratio between IRAS and AKARI, (iii)the third principle component was largely contributed by infrared colors.

Improvement in Probability of Detection for Leakage Magnetic Flux Methods (누설자속탐상법의 결함검출능력 향상에 관한 연구)

  • Lee, Jin-Yi
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.13-18
    • /
    • 2004
  • It is important to estimate the distribution of intensity of a magnetic field for application of magnetic method to industrial nondestructive evaluation. Magnetic camera provides the distribution of a quantitative magnetic field with homogeneous lift-off and same spatial resolution. Leakage magnetic flux near the crack on the specimen could be amplified by 3-dimensional magnetic fluid and zoom in and out of measurement area. This study introduces the experimental consideration of the effects of lens for concentrating of magnetic flux. The experimental results showed that the magnetic fluid has sufficient lens effect for magnetic camera and effect of improvement in probability of detection.

  • PDF

Srability Analysis Of High-Tc Superconducting Tape Through Magnetic Field Analysis Of The High-Tc Superconducting synchronous Motor (고온초전도동기모터의 자계분포해석에 따른 테이프선재의 안정도해석)

  • 송명곤;윤용수;홍계원;이산진;고태국
    • Progress in Superconductivity and Cryogenics
    • /
    • v.1 no.2
    • /
    • pp.25-29
    • /
    • 1999
  • The purpose of this paper is to find the magnetic filed distribution inside the motor in order to find out if the high-Tc superconducting tapes operate stably in actual motor operation in a detailed model of the actual motor was analyzed through F.E.M.(finite Element Method). As a result, it has been proved that the high-Tc superconducting tapes can with-stand 4 A of current with staility. 4 A was the amount of current with stability. 4 A was the amount of current needed to achieve 600 A·turns which is required by the previous simulation aimed at developing this the flux damper reduces armature reactance during the motor operation. But it was observed that the flux damper generates loss by means of leakage flux and this decreases the output of the motor by about 5%.

  • PDF

A Study on the Development of Industrial Dryer using the Superadiabatic Combustion Phenomena (초단열 연소현상을 이용한 산업용 건조기 개발에 관한 연구)

  • Chae, J.O.;Hwang, J.W.;Han, J.H.;Hwang, H.J.;Jun, J.K.;Han, J.O.;Lee, J.S.;You, H.S.;Lee, H.C.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.168-174
    • /
    • 2000
  • This paper illustrates the validity of reciprocating type superadiabatic combustor as a industrial applicable dryer. After the investigations of inner and surface temperature distributions of combustor various with air-fuel(methane) ratio, mixture flow rate and reciprocating time, this combustor can be applied in industrial dryer at certain operating conditions. The results are as follows. 1) Higher equilivalence ratio emits more radiation heat flux at the censer chamber 2) Higher mixture flow rate makes more uniform temperature distribution. however, due to the heat transfer from censer chamber to porous media, the radiation beat flux is worse. 3) Longer reciprocating time emit more radiation heat flux. however, this case also makes temperature distribution wide

  • PDF

Analysis of Flux Distribution in 2 Phase 8 Pole HB type LPM by 3D FEM (3차원 유한요소법에 의한 2상 8극 HB형 LPM의 가동자의 자속분포 해석)

  • Lee, Dong-Ju;Lee, Eun-Woong;Kim, Sung-Hun;Kim, Sung-Jong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.34-36
    • /
    • 1999
  • 2 phase 8 pole HB type LPM(linear pulse motor) has the suitable structure for it's microstep drive. Hence, if this LPM will be drived by this method, the limited(mechanically) step resolution can be increased further and vibration and noise can be decreased considerably. But, It is difficult that this LPM was analyzed in detail because of it's complex magnetic circuits to be composed the LF(longitudinal flux) and TF(transverse flux.) path. If LPM was analyzed by the approximate 2D model, we could not be obtained satisfactory result. Therefore, It is necessary to be analyzed the 3D model in detail for the more satisfactory results. In this paper, we obtain 3D flux distribution of the mover using by 3D FEM(finite element method)

  • PDF

Comparison of Power Loss and Magnetic Flux Distribution in Octagonal Wound Transformer Core Configurations

  • Cinar, Mehmet Aytac;Alboyaci, Bora;Sengul, Mehlika
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1290-1295
    • /
    • 2014
  • In this paper, various configurations of octagonal wound transformer core topology, which has previously proved advantages on conventional wound cores, are studied. Each configuration has different joint types and different placement of joint zones on the core. Magnetic flux distributions and power losses of each configuration are analyzed and compared. Comparisons are based on both 2D&3D finite element simulations and experimental studies. The results show that, joint types and their placements on the core cause local flux accumulations and dramatically affect power loss of the core.

Determination of Curvature Radius of Magnetic Tool Using Weighted Magnetic Flux Density in Magnetic Abrasive Polishing (자속밀도 가중치에 의한 자유곡면 자기연마 공구곡률 선정)

  • Son, Chul-Bae;Ryu, Man-Hee;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.3
    • /
    • pp.69-75
    • /
    • 2013
  • During the magnetic abrasive polishing of a curved surface, the improvement in surface roughness varies with the maximum value and distribution of magnetic flux density. Thus, in this study, the magnetic flux density on the curved surface was simulated according to curvature radii of magnetic tool. As a result of the simulation, the 14.5mm of the magnetic tool had a higher maximum magnetic flux density and it showed a large weighted magnetic flux density. The weighted magnetic flux density means the highest value for the magnetic flux density in the curvature of the magnetic tool. From the experimental verification, the better improvement in surface roughness was observed on wider area at the 14.5mm radius of the magnetic tool than other radii.

Finite Element Analysis and Dynamics Simulation of Mechanical Flux-Varying PM Machines with Auto-Rotary PMs

  • Huang, Chaozhi;Zhang, Zhixuan;Liu, Xiping;Xiao, Juanjuan;Xu, Hui
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.744-750
    • /
    • 2019
  • A new type of auto-rotary PM mechanical flux-varying PM machine (ARPMMFVPMM) is proposed in this paper, which can overcome the problem where the air-gap magnetic field of a PM machine is difficult to freely adjust. The topology structures of the machine and the mechanical flux-adjusting device are given. In addition, the operation principle of flux-adjusting is analyzed in detail. Furthermore, the deformation of a spring with the speed variation is obtained by virtual prototype technology. Electromagnetic characteristics including the flux distribution, air gap flux density, flux linkage, electromagnetic-magnetic-force (EMF), and flux weakening ability are computed by 2D finite element method (FEM). Results show that the machine has some advantages such as the good field control ability.

Spatial Distribution Characteristics of Small LRE-injector's Spray-droplet According to the Variation of Fuel-injection Pressure (소형 액체로켓엔진 인젝터 분무의 연료분사압력 변이에 따른 액적의 공간분포 특성)

  • Jung, Hun;Kim, Jeong-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.5
    • /
    • pp.1-8
    • /
    • 2008
  • Dual-mode Phase Doppler Anemometry (DPDA) was used to scrutinize the spatial distribution characteristics of spray emanating from a small Liquid-Rocket Engine (LRE) injector. Droplet size and velocity were measured according to the variation of injection pressure along the plane normal to the spray stream and then the spray characteristic parameters such as Arithmetic Mean Diameter (AMD), Sauter Mean Diameter (SMD), number density, span of drop size distribution, and volume flux were deduced for an investigation of spray breakup characteristics. As the injection pressure increases, the number density, span, and volume flux of spray droplets become higher, whereas the AMD gets smaller.