• Title/Summary/Keyword: flux data quality

Search Result 178, Processing Time 0.024 seconds

Characterizing Spatiotemporal Variations and Mass Balance of CO2 in a Stratified Reservoir using CE-QUAL-W2 (CE-QUAL-W2를 이용한 성층 저수지에서 CO2의 시공간적 분포 및 물질수지 분석)

  • Park, Hyungseok;Chung, Sewoong
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.508-520
    • /
    • 2020
  • Dam reservoirs have been reported to contribute significantly to global carbon emissions, but unlike natural lakes, there is considerable uncertainty in calculating carbon emissions due to the complex of emission pathways. In particular, the method of calculating carbon dioxide (CO2) net atmospheric flux (NAF) based on a simple gas exchange theory from sporadic data has limitations in explaining the spatiotemporal variations in the CO2 flux in stratified reservoirs. This study was aimed to analyze the spatial and temporal CO2 distribution and mass balance in Daecheong Reservoir, located in the mid-latitude monsoon climate zone, by applying a two-dimensional hydrodynamic and water quality model (CE-QUAL-W2). Simulation results showed that the Daecheong Reservoir is a heterotrophic system in which CO2 is supersaturated as a whole and releases CO2 to the atmosphere. Spatially, CO2 emissions were greater in the lacustrine zone than in the riverine and transition zones. In terms of time, CO2 emissions changed dynamically according to the temporal stratification structure of the reservoir and temporal variations of algae biomass. CO2 emissions were greater at night than during the day and were seasonally greatest in winter. The CO2 NAF calculated by the CE-QUAL-W2 model and the gas exchange theory showed a similar range, but there was a difference in the point of occurrence of the peak value. The findings provide useful information to improve the quantification of CO2 emissions from reservoirs. In order to reduce the uncertainty in the estimation of reservoir carbon emissions, more precise monitoring in time and space is required.

Re-evaluation of Ammonium Data in Seawater: an Unique Short-Term Index (해수 암모늄 자료의 재평가: 독특한 단주기 수질지표 가능성)

  • JEONG, YONG HOON;YANG, JAE SAM
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.21 no.2
    • /
    • pp.58-66
    • /
    • 2016
  • We have evaluated the ammonium data in seawater as a potential short-term index for marine environment through the following steps. 1. reviewing of chemical characteristics of ammonium in seawater, 2. comparative relationships of ammonium data with other water quality indices such as DO, COD, and nutrients from Typical Marine Environment(TME) and Special Marine Environment(SME). Ammonium data generally represent negative correlation with DO, while positive correlation with COD. In particular, under frequent cases of seawater conditions showing similar concentration of COD or DO, we have limited choice of explanation for such situation. However ODIN(ODIN/RDIN) or RDIN(RDIN/TDIN) ratio could provide advanced information to understand these seawater conditions. Based on these results, we suggest ammonium data as a potential short-period index for transilient marine environment, such as benthic flux of bottom sediment, hypoxia, and algal bloom. Under overcoming several handicaps, ammonium data could be an useful tool for better understand short transformation of marine environment.

A Study on Time Series Analysis of Membrane Fouling by using Genetic Algorithm in the Field Plant (유전자알고리즘을 이용한 막오염 시계열 예측 연구)

  • Lee, Jin Sook;Kim, Jun Hyun;Jun, Yong Seong;Kwak, Young Ju;Lee, Jin Hyo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.8
    • /
    • pp.444-451
    • /
    • 2016
  • Most research on membrane fouling models in the past are based on theoretical equations in lab-scale experiments. But these studies are barely suitable for applying on the full-scale spot where there is a sequential process such as filtration, backwash and drain. This study was conducted in submerged membrane system which being on operation auto sequentially and treating wastewater from G-water purification plant in Incheon. TMP had been designated as a fouling indicator in constant flux conditions. Total volume of inflow and SS concentration are independent variables as major operation parameters and time-series analysis and prediction of TMP were conducted. And similarity between simulated values and measured values was assessed. Final prediction model by using genetic algorithm was fully adaptable because simulated values expressed pulse-shape periodicity and increasing trend according to time at the same time. As results of twice validation, correlation coefficients between simulated and measured data were $r^2=0.721$, $r^2=0.928$, respectively. Although this study was conducted limited to data for summer season, the more amount of data, better reliability for prediction model can be obtained. If simulator for short range forecast can be developed and applied, TMP prediction technique will be a great help to energy efficient operation.

Evaluation of MODIS-derived Evapotranspiration According to the Water Budget Analysis (물 수지 분석에 의한 MODIS 위성 기반의 증발산량 평가)

  • Lee, Yeongil;Lee, Junghun;Choi, Minha;Jung, Sungwon
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.10
    • /
    • pp.831-843
    • /
    • 2015
  • This study estimates MODIS-derived evapotranspiration data quality by revised RS-PM algorithm in Seolmacheon test basin. We used latent flux with eddy covariance method to evaluate MODIS-derived spatial evapotranspiration and gap-filled these data by three methods (FAO-PM, MDV and Kalman Filter) and to quantify daily evapotranspiration. Gap-filled daily evapotranspiration data was used to evaluate evapotranspiration computed by revised RS-PM algorithm derived MODIS satellite images. For the water budget analysis, we used soil moisture content that is quantified to average individual soil moisture rate observed by TDR (Time Domain Reflectometry) sensor at soil depth. The soil moisture variation is calculated in consideration from initial to final soil moisture content. According to the result of this study, evapotranspiration computed by revised RS-PM algorithm is very larger than eddy covariance data gap-filled by three methods. Also, water budget characteristics is not closed. We could analysis that MODIS-derived spatial evapotranspiration does not represent actual evapotranspiration in Seolmacheon.

Evidences of in Situ Remediation from Long Term Monitoring Data at a TCE-contaminated Site, Wonju, Korea

  • Lee, Seong-Sun;Kim, Hun-Mi;Lee, Seung Hyun;Yang, Jae-Ha;Koh, Youn Eun;Lee, Kang-Kun
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.6
    • /
    • pp.8-17
    • /
    • 2013
  • The contamination of chlorinated ethenes at an industrial complex, Wonju, Korea, was examined based on sixteen rounds of groundwater quality data collected from 2009 to 2013. Remediation technologies such as soil vapor extraction, soil flushing, biostimulation, and pumping-and-treatment have been applied to eliminate the contaminant sources of trichloroethylene (TCE) and to prevent the migration of TCE plume from remediation target zones. At each remediation target zone, temporal monitoring data before and after the application of remediation techniques showed that the aqueous concentrations of TCE plume present at and around the main source areas decreased significantly as a result of remediation technologies. However, the TCE concentration of the plumes at the downstream area remained unchanged in response to the remediation action, but it showed a great fluctuation according to seasonal recharge variation during the monitoring period. Therefore, variations in the contaminant flux across three transects were analyzed. Prior to the remediation action, the concentration and mass discharges of TCE at the transects were affected by seasonal recharge variation and residual DNAPLs sources. After the remediation, the effect of remediation took place clearly at the transects. By tracing a time-series of plume evolution, a greater variation in the TCE concentrations was detected at the plumes near the source zones compared to the relatively stable plumes in the downstream. The difference in the temporal profiles of TCE concentrations between the plumes in the source zone and those in the downstream could have resulted from remedial actions taken at the source zones. This study demonstrates that long term monitoring data are useful in assessing the effectiveness of remediation practices.

Two-phase Pressure Drop in Horizontal Rectangular Channel (수평 사각 채널에서의 상 압력 강하)

  • Lim, Tae-Woo;You, Sam-Sang;Kim, Hwan-Seong
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.25 no.3
    • /
    • pp.625-631
    • /
    • 2013
  • Two-phase pressure drop experiments were performed during flow boiling to deionized water in a microchannel having a hydraulic diameter of $500{\mu}m$. Tests were made in the ranges of heat fluxes from 100 to $400kW/m^2$, vapor qualities from 0 to 0.2 and mass fluxes of 200, 400 and $600kg/m^2s$. The frictional pressure drop during flow boiling is predicted by using two models; the homogeneous model that assumes equal phase velocity and the separate flow model that allows a slip velocity between two phases. From the experimental results, it is found that the two phase multiplier decreases with an increase in mass flux. Measured data of pressure drop are compared to a few available correlations proposed for macroscale and mini/microscale. Among the separated flow models, the correlation model suggested by Lee and Garimella predicted the frictional pressure drop within MAE of 47.2%, which is better than other correlations.

Changes in the Constituents of Citrus Juice by Ultrafiltration (한외여과에 의한 온주 밀감주스의 성분 변화)

  • 김성미;강영주
    • Food Science and Preservation
    • /
    • v.8 no.4
    • /
    • pp.442-448
    • /
    • 2001
  • The citrus juice obtained from Jeju mandarines, Citru unshiu, was filtered to remove 20% of its original volume through the hollow fiber ultrafiltration systems equipped with various pore sizes of membranes. As the results of ultrafiltration, the contents of total acids, ascorbic acid, ascorbic acid, free sugars and neohesperidin in retentate showed the tendencies of gradual decreases with the increase of membrane pore sizes from 10K to 100K daltons, but tendencies were inverted when the membrane with 500k was used. The changes of color, soluble solids, total nitrogen, amino-nitrogen, naringin and hesperidin were not consistent with the membrane pore size. Considering all the data obtained using various pen sizes of membranes, the filtration system with NMWC 500K daltons was the most effective to produce citrus juices with hither quality.

  • PDF

Optical and Heat Transfer Characteristics in a Rapid Thermal Annealing System for LCD Manufacturing Procedures (LCD 제작용 급속 열처리 시스템내의 광학 및 열전달 특성)

  • Lee, Seong-Hyuk;Kim, Hyung-June;Shin, Dong-Hoon;Lee, Joon-Sik;Choi, Young-Ki;Park, Seung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1370-1375
    • /
    • 2004
  • This article investigates the heat transfer characteristics in a RTA system for LCD manufacturing and suggests a way to evaluate the quality of a poly-Si film from the thin film optics analysis. The transient and one-dimensional conductive/radiative heat transfer equation considering wave interference effect is solved to predict surface temperatures of thin films. In dealing with radiative heat transfer, a one-dimensional two-flux method is used and the ray tracing method is also utilized to account for the wave interference effects. It is assumed that each interface is assumed diffusive but the spectral radiative properties are included. It is found that the selective heating region exists for various wavelengths and consequently may contribute to heat the poly-Si film. Using the formalism of the characteristic transmission matrix, the lumped structure reflectance, transmittance, and absorptance are calculated and they are compared with experimental data of the poly-Si film during the SPC process via the FE-RTA (Field-Enhanced RTA) technology.

  • PDF

Study on the Condensation Heat Transfer Characteristics in Small Diameter Tubes (세관 내 응축 열전달 특성에 관한 연구)

  • 박기원;노건상;홍진우;오후규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.29-38
    • /
    • 2004
  • The Condensation heat transfer coefficients of R-22 and R-l34a were measured in smooth horizontal copper tubes with inner diameters of 1.77. 3.36 and 5.35 mm. respectively. The experiments were conducted in a closed loop. which was driven by a magnetic gear pump. They were Performed for the following ranges of variables: mass flux (200 to $500\;kg/\textrm{m}^2{\cdot}s$) saturation temperature $30^{\circ}C$ and quality (0 to 1.0). The main results obtained are as follows Condensation heat transfer coefficients in the small diameter tubes (ID < 7 mm) were observed to be strongly affected by inner diameter change and to differ from those in the large diameter tubes. The heat transfer coefficients in the small diameter tubes were 20 ~ 40 % higher than those in the large diameter tubes as the inner diameter of the tube was reduced. Also. it was very difficult to apply some well-known previous predictions (Cavallini-Zecchin's. Haraguchi's and Dobson's correlation) to small diameter tubes. Based on an analogy between heat and mass transfer the new correlation is Proposed to predict the experimental data more accurately.

Simulations of Thermal Stratification of Daecheong Reservoir using Three-dimensional ELCOM Model (3차원 ELCOM 모형을 이용한 대청호 수온성층 모의)

  • Chung, Se Woong;Lee, Heung Soo;Choi, Jung Kyu;Ryu, In Gu
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.922-934
    • /
    • 2009
  • The transport of contaminants and spatial variation in a deep reservoir are certainly governed by the thermal structure of the reservoir. There has been continuous efforts to utilize three-dimensional (3D) hydrodynamic and water quality models for supporting reservoir management, but the efforts to validate the models performance using extensive field data were rare. The study was aimed to evaluate a 3D hydrodynamic model, ELCOM, in Daecheong Reservoir for simulating heat fluxes and stratification processes under hydrological years of 2001, 2006, 2008, and to assess the impact of internal wave on the reservoir mixing. The model showed satisfactory performance in simulating the water temperature profiles: the absolute mean errors at R3 (Hoenam) and R4 (Dam) sites were in the range of $1.38{\sim}1.682^{\circ}C$. The evaporative and sensible heat losses through the reservoir surface were maximum during August and January, respectively. The net heat flux ($H_n$) was positive from February to September, while the stratification formed from May and continued until September. Instant vertical mixing was observed in the reservoir during strong wind events at R4, and the model reasonably reproduced the mixing events. A digital low-pass filter and zero crossing method was used to evaluate the potential impact of wind-driven internal wave on the reservoir mixing. The results indicated that most of the wind events occurred in 2001, 2006, 2008 were not enough to develop persistent internal wave and effective mixing in the reservoir. ELCOM is a suitable 3D model for supporting water quality management of the deep and stratified reservoirs.