• Title/Summary/Keyword: flux concentration

Search Result 924, Processing Time 0.029 seconds

Phenol removal by tailor-made polyamide-fly ash composite membrane: Modeling and optimization

  • Vandana, Gupta;Anandkumar, J.
    • Membrane and Water Treatment
    • /
    • v.10 no.6
    • /
    • pp.431-440
    • /
    • 2019
  • A novel composite membrane was synthesized using crosslinked polyamide and fly ash ceramic substrate for phenol removal. Glutaraldehyde was used as crosslinker. Characterization shows that synthesized membrane possesses good permeability ($0.184l.m^{-2}.h^{-1}.kPa^{-1}$), MWCO (1.7 kDa), average pore size (1.08 nm) and good chemical stability. RSM was adopted for phenol removal studies. Box-Behnken-Design using quadratic model was chosen for three operating parameters (feed phenol concentration, pH and applied pressure) against two responses (phenol removal, flux). ANOVA shows that model is statistically valid with high coefficient of determination ($R^2$)value for flux (0.9897) and phenol removal (0.9302). The optimum conditions are obtained as pH 2, $46mg.l^{-1}$ (feed phenol concentration) and 483 kPa (applied pressure) with 92.3% phenol removal and $9.2l.m^{-2}.h^{-1}$ flux. Data validation with deviation of 4% confirms the suitability of model. Obtained results reveal that prepared composite membrane can efficiently separate phenol from aqueous solution.

Electrotransport of Donepezil Hydrochloride from Poly(ethylene oxide) Hydrogel (폴리에틸렌옥사이드 하이드로겔을 이용한 도네페질염산염의 이온토포레시스 피부투과)

  • Choi, Yu-Ri;Oh, Seaung-Youl
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.2
    • /
    • pp.91-100
    • /
    • 2010
  • The objective of this work is to study transdermal delivery of donepezil hydrochloride (DH) using iontophoresis and to evaluate various factors which affect the transdermal transport. After the flux study using 4 kinds of hydrogel, hydrogel containing 8% poly(ethylene oxide) (PEO) was chosen as the hydrogel for further studies. Under experimental condition, DH was stable. We have studied the effect of polarity, current density, drug concentration and current profile on transdermal flux and compared the results. In vitro flux study was performed at $33^{\circ}C$, using side-by-side diffusion cell and full thickness hairless mouse skin. DH is positively charged at pH 7.4, and anodal delivery was much larger than cathodal and passive delivery at all current densities studied (0.2, 0.4 and 0.6 mA/$cm^2$). Cathodal delivery showed higher flux than passive flux. Flux increased as the concentration of DH in hydrogel increased. Pulsatile application of current showed smaller flux value than the application of continuous current. Based on these results, we have evaluated the possibility of delivering enough amount of DH to reach the therapeutic level. The maximum cumulative amount of DH transported for 12 hours was 455 ${\mu}g/cm^2{\cdot}hr$ when the amount of DH in the hydrogel was 3 mg/mL and the current density was 0.4 mA/$cm^2$. If the patch size is 10 $cm^2$, then we can deliver 4.6 mg for 12 hours. Because the daily dosage of DH is 5 mg, it seems possible to deliver clinically effective amount of DH using iontophoresis. This study also provides some information about the role of electrorepulsion and electroosmosis during the transport through skin.

Iontophreotic delivery of vitamine-C-2-phosphate

  • Kim, Su-Youn;Oh, Seaung-Youl
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.411.2-411.2
    • /
    • 2002
  • In order to develope an optimum formulation for iontophoretic delivery of vitamine-C-2 phosphate. we have prepared 3 different formulations using hydrophilic polymers, such as poloxamer, carbo pol and HPMC and iontophoretic flux through skin from these hydrogel formulations was carried out. The effect of current density, drug concentration and current profile on flux was investigated. In-vitro flux study was performed at 36.5$^{\circ}C$, using side-by-side diffusion cell. Full-thickness hairless mouse skin was used for this work. (omitted)

  • PDF

Using response surface methodology and Box-Behnken design in the study of affecting factors on the dairy wastewater treatment by MEUF

  • Khosroyar, Susan;Arastehnodeh, Ali
    • Membrane and Water Treatment
    • /
    • v.9 no.5
    • /
    • pp.335-342
    • /
    • 2018
  • Micelle-Enhanced Ultrafiltration (MEUF) is a membrane separation processes that improving ultrafiltration process with the formation of micelles of the surface active agents. Surface active agents are widely used to improve membrane processes due to the ability to trap organic compounds and metals in the treatment of industrial waste water. In this study, surface active agents are used to improve micelle-enhanced ultrafiltration (MEUF) to reduce chemical oxygen demand (COD), total dissolved solid (TDS), turbidity and clogging the membrane in dairy wastewater treatment. Three important operational factors (anionic surface active agent concentration, pressure and pH) and these interactions were investigated by using response surface methodology (RSM) and Box-Behnken design. Results show that due to the concentration polarization layer and increase the number of Micelles; the anionic surface active agent concentration has a negative effect on the flux and has a positive effect on the elimination of contamination indices. pH, and the pressure have the greatest effect on flux. On the other hand, it could be stated that these percentages of separation are in the percentages range of Nano-filtration (NF). While MEUF process has higher flux than NF process. The results have been achieved at lower pressure while NF process needs high pressure, thus making MEUF is the replacement for the NF process.

Characteristic of In Situ Suspended Particulate Matter at the Gwangyang bay Using LISST-100 and ADCP (LISST-100과 ADCP를 이용한 광양만 현장 부유입자물질 특성 연구)

  • Lee, Byoung-Kwan;Kim, Seok-Yun
    • Journal of Environmental Science International
    • /
    • v.18 no.11
    • /
    • pp.1299-1307
    • /
    • 2009
  • In order to measure in-situ suspended particle size, volume concentration of suspended particulate matter and current speed, mooring observation was performed at the Gwangyang Bay by using of an optical instrument, 'LISST-100' and an acoustic instrument, 'ADV'(St. S1). And the sediment flux was obtained based on the concentration of suspended particulate matter and current speeds measured at three lines of Gwangyang Bay during ebb and flood tide of August 2006. To investigate the spatial variation of suspended particulate matter, profiling observations were measured difference echo intensity and beam attenuation coefficient by using of ADCP and Transmissometer (Line A, B, C). The suspended sediment flux rate at the mouth of Gwangyang Bay was observed to be higher during asymmetrical than symmetrical of current speeds. The flux of suspended particulate matter concentration and current speeds were transported to southeastern direction of surface layer and northwestern direction of bottom layer at the western area at line A of Gwangyang Bay. Small suspended particles have been found to increase attenuation and transmission more efficiently than similar large particles using acoustic intensity (ADV/ADCP) or optical transmit coefficient (LISST-100/Transmissometer). The application and problems as using optical or acoustic instruments will be detected for use in time varying calibrations to account for non-negligible changes in complex environments in situ particle dynamics are poorly understood.

Effect of Salt Concentration and Temperature in Synthetic Dyestuff Wastewater Treatment using Plate and Frame Membrane Module (평판형 막모듈을 이용한 합성염료 폐수처리에 있어서 염농도 및 온도의 영향)

  • Kim, Sun-Il;Lee, Bong-Woo;Yun, Young-Jae
    • Journal of Environmental Science International
    • /
    • v.7 no.2
    • /
    • pp.209-216
    • /
    • 1998
  • Nanofiltration[NF45] and reverse osmosis membrane(HR98PP) separation treatment of dyestuff wastewater was carried out In order to separate relatively pure water from synthetic dyestuff wastewater, which consists of reactive dye, acid dye, basic dye, direct dye, and disperse dye. The experiments were performed by using the plate and frame membrane module. In the nanofiltration and reverse osmosis membrane separation, When the NaCl concentration was 0.1, 5.0, and 20.091, retention was 63.0, 46.0, 0.9%, respectively. When permeate flux was 125.0, 67.5, and 45.0 L/$m^2$ h, the osmotic pressure increased with Increasing the NaCl concentration. Permeate flux of two membranes Increased as temperature Increased due to segmental movement of polymer of the membrane and the rejection rate of dyestuff was decreased gradually. It was found that the rejection rate was about 95% in the nanofiltratlon, while the reverse osmosis membrane showed a high rejection rate of 99% under all temperature and pressures conditions.

  • PDF

Rumen Parameters and Urea Kinetics in Goats and Sheep

  • Darlis, N. Abdullah;Halim, R.A.;Jalaludin, S.;Ho, Y.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.7
    • /
    • pp.922-928
    • /
    • 2000
  • The effects of animal species and supplements on rumen fluid characteristics, plasma urea-N (PUN) concentration, plasma urea-N pool size, urea-N degradation in the gut and urea-N net flux (urea-N synthesis rate) were studied in goats and sheep, with some minor differences detected. The animals were fed either chopped rice straw ad libitum+200 g soybean meal (SBM), or chopped rice straw ad libitum+190 g soybean meal+300 g sago meal (SBM+SM) for 14 days. The supplements were isonitrogenous (80 g crude protein/animal/d). [$^{14}C$]-urea was used as the marker for urea metabolism studies. Two animals from each species were fed either supplement in a cross-over design in two periods. The results showed that rumen pH was significantly (p<0.001) lower in animals fed SBM+SM than those fed SBM supplement. The ammonia concentrations of rumen fluid were significantly (p<0.01) higher in sheep (382.9 mg N/L) than goats (363.1 mg N/L) when fed SBM supplement but lower (282.5 mg N/L) than that of goats (311.0 mg N/L) when fed SBM+SM supplement. Total VFA concentrations were significantly (p<0.05) higher in animals fed SBM+SM supplement than those fed SBM supplement. Goats had significantly (p<0.01) higher molar proportions of acetate (79.1, 77.7%, respectively) than sheep (75.8, 74.0%, respectively) in both supplements. The molar proportion of acetate was significantly (p<0.05) higher, while that of butyrate lower in animals fed SBM supplement than those fed SBM+SM supplement. In animals fed SBM supplement, the molar proportion of propionate was significantly (p<0.01) higher in sheep (18.0%) than in goats (15.6%), but in animals fed SBM+SM, the molar proportion of butyrate was significantly (p<0.01) higher (9.6%) in sheep than in goats (7.2%). Plasma urea-N concentration, plasma urea-N pool size, urea-N degradation in the gut, urea-N net flux and the fraction of urea-C from the blood entering the rumen were not significantly different between goats and sheep fed either supplement. However, PUN concentration was significantly (p<0.05) lower in animals fed SBM+SM supplement (average of 13.8 mg N/100 ml) than in those fed SBM supplement (average of 16.5 mg N/100 ml). The urea net flux was significantly (p<0.05) higher in goats (average of 14.5 g N/d) than sheep (average of 12.9 g N/d), and animals fed SBM supplement showed higher (average of 14.9 g N/d) urea net flux than animals fed SBM+SM supplement (average of 12.9 g N/d). A significant (p<0.05) positive correlation was observed between urea-N net flux and urea-N degradation; urea-N net flux and pool size; urea-N net flux and urea excretion in the urine; and PUN and rumen ammonia in goats. While in sheep, significant (p<0.05) positive correlation was observed between urea-N net flux and urea excretion in the urine; and PUN and rumen ammonia.

Separation of Alcohol/water Mixtures with Surface-modified Alumina Membrane in Vapor Permeation (표면개질 알루미나막의 증기투과에 의한 알코올의 분리)

  • 이상인;오한기;이광래
    • Membrane Journal
    • /
    • v.10 no.3
    • /
    • pp.121-129
    • /
    • 2000
  • The membrane requires both high in selectivity and flux. However, the permselective membrane has low flux. In this study, the porous alumina membrane was coated with silane coupling agent in order to enhance the flux with proper selectivity. The contact angle of water to the surface-modified alumina membrane was greater than 90$^{\circ}$, which indicated the high hydrophobicity. The modified membrane was tested in vapor permeation for the concentration of aqueous ethanol, isopropanol, and n-butanol. With the increase of ethanol, isopropanol, butanol concentration in the feed, permeation flux increased due to the greater affinity of ethanol, isopropanol, butanol with surface-modified alumina membrane than that of water. The experimental results showed that the permeation tate of surface-modified alumina membrane was 20~1000 times greater than that of a polymer membranes.

  • PDF

Dynamic Behavioral Prediction of Escherichia coli Using a Visual Programming Environment (비쥬얼 프로그래밍 환경을 이용한 Escherichia coli의 동적 거동 예측)

  • Lee, Sung-Gun;Hwang, Kyu-Suk;Kim, Cheol-Min
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2004.11a
    • /
    • pp.39-49
    • /
    • 2004
  • When there is a lack of detailed kinetic information, dFBA(dynamic flux balance analysis) has correctly predicted cellular behavior under given environmental conditions with FBA and different ial equations. However, until now, dFBA has centered on substrate concentration, cell growth, and gene on/off, but a detailed hierarchical structure of a regulatory network has not been taken into account. For this reason, the dFBA has limited the represen tation of interactions between specific regulatory proteins and genes and the whole transcriptional regulation mechanism with environmental change. Moreover, to calculate optimal metabolic flux distribution which maximizes the growth flux and predict the b ehavior of cell system, linear programming package(LINDO) and spreadsheet package(EXCEL) have been used simultaneously. thses two software package have limited in the visual representation of simulation results and it can be difficult for a user to look at the effects of changing inputs to the models. Here, we descirbes the construction of hierarchical regulatory network with defined symbolsand the development of an integrated system that can predict the total control mechanism of regulatory elements (opero ns, genes, effectors, etc.), substrate concentration, growth rate, and optimal flux distribution with time. All programming procedures were accoplished in a visual programming environment (LabVIEW).

  • PDF

Characteristics of Reverse Flux by using Direct Omosis in RO Membrane Process (역삼투막 공정에서 Direct Osmosis의 역방향 Flux 기초특성)

  • Kang, Il-Mo;Dock-Ko, Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.399-405
    • /
    • 2011
  • In a desalination technology using RO membranes, chemical cleaning makes damage for membrane surface and membrane life be shortened. In this research cleaning technology using direct osmosis (DO) was introduced to apply it under the condition of high pH and high concentration of feed. When the high concentration of feed is injected to the concentrate side after release of operating pressure, then backward flow occurred from treated water toward concentrated for osmotic pressure. This flow reduces fouling on the membrane surface. Namely, flux of DO was monitored under pH 3, 5, 10 and 12 conditions at feed concentrations of NaCl 40,000 mg/L, 120,000 mg/L and 160,000 mg/L. As a result, DO flux in pH 12 increased about 21% than pH 3. DO cleaning was performed under the concentrate NaCl 160,000 mg/L of pH 12 during 20 minutes. Three kinds of synthetic feed water were used as concentrates. They consisted of organic, inorganic and seawater; chemicals of SiO2 (200 mg/L), humic acid (50 mg/L) sodium alginate (50 mg/L) and seawater. As a result, fluxes were recovered to 17% in organic fouling, 15% in inorganic fouling and 14% of seawater fouling after cleaning using DO under the condition of concentrate NaCl 160,000 mg/L of pH 12.