• Title/Summary/Keyword: flux concentration

Search Result 924, Processing Time 0.029 seconds

Comparison of Performances of Forward Osmosis and Membrane Distillation Processes for Shale Gas Plant Water Treatment (셰일가스 플랜트 용수 처리를 위한 정삼투(FO)와 막증발(MD) 공정의 성능 비교)

  • Koo, Jaewuk;Lee, Sangho;Shin, Yonghyun;Yun, Taekgeun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.3
    • /
    • pp.279-284
    • /
    • 2015
  • As non-conventional oil resources such as shale gas have been widely developed, proper treatment of flowback and produced water is becoming important. However, application of conventional water treatment techniques is limited due to high concentration of pollutants such as oil and grease, organics, harmful chemicals, and inorganic ions. In this study, we examined the feasibility of using forward osmosis (FO) and air gap membrane distillation (AGMD) as novel treatment options for shale gas wastewater. Laboratory-scale FO and MD devices were fabricated and used for the experiments. Results showed that FO could be used to treat the synthetic wastewater. Using 5 M NaCl as the draw solution, the flux was approximately $6L/m^2-hr$ during the treatment of low range wastewater (TDS: 66,000 mg/L). Nevertheless, AGMD was more effective to treat high range wastewater (Total Dissolved Solid: 260,000 mg/L) than FO.

Radiation Exposure of an Astronaut subject to Various Space Radiation Environments and Shielding Conditions (다양한 우주방사선 환경과 차폐 조건에서 우주인이 받는 방사선 피폭량)

  • Chae, Myeong-Seon;Chung, Bum-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.10
    • /
    • pp.1038-1048
    • /
    • 2010
  • Radiation exposures of an astronaut during the space travels to the International Space Station(ISS) of the Soyuz and the Moon of the Apollo, were calculated considering the altitude, boarding time, period of stay, kinds of spaceships and space suits. The calculated radiation exposures decrease dramatically according to the thickness of the shielding by the wall of the spaceships and by the space suits. For the space travel to the ISS of Soyuz at Low Earth orbit, the thickness of the spaceship required to optimally reduce the radiation exposure is 3 cm. For the Extravehicle Mobility Unit(EMU) the exposures are minimized at 4 cm of the aluminized Mylar and 5 cm of the Demron, respectively. The aluminized Mylar showed better radiation shielding than the Demron which contains the high Z materials. The radiation exposures of an astronaut were $4.2\times10^{-6}$ Sv for the ISS travel and $4.3\times10^{-5}$ Sv for the Moon explore. The high concentration of the high energy proton flux at the surface of the Moon results in high radiation exposure. The calculation scheme and results of this study can be used in the design of the shielding performance of a spaceship and space suits.

Distribution of DMS Concenturation in the Atmosphere over Yellow Sea - Preliminary Measurements 1mm Duk-Juk Island (한국 황해지역의 DMS 분포특성에 대한 연구 - 덕적도를 중심으로)

  • Kim, Ki-Hyun;Kim, Ji-Young;Song, Ki-Bum;Kim, Na-Young;Lee, Gang-Woong;Bae, Gwi-Nam
    • Journal of the Korean earth science society
    • /
    • v.21 no.1
    • /
    • pp.51-58
    • /
    • 2000
  • This study was performed to accumulate database for natural sulfur emissions in the Yellow Sea region of Korea. The atmospheric concentrations of dimethylsulfide(DMS) were measured during two intensive field experiments (April and September 1999) from Duk-Juk Island located in the Yellow Sea. Ship-measurement of DMS was made additionally between Chungdo(China) and Inchun(Korea) across the Yellow Sea during June 1999. The mean(and ISD) of DMS concentrations in Duk-Juk Island during two field campaigns was $24.0{\pm}40.5$(n=40, April) and $61.1{\pm}37.9$ pptv(n=35, September), respectively. The atmospheric DMS measured from ship experiments was generally low and close to the background concentrations in the open sea area. The temporal distributions of DMS concentration were complicated in some sense but comparable to those of ambient meteorological parameters. On the basis of our measurements of atmospheric DMS(and evidence found from previous studies), the sea-to-air flux of DMS in the Yellow Sea is estimated to be about 4Gg S/yr. This amount of natural S emissions is relatively lower than the estimates derived for Cheju Island. Therefore, additional experiments may be desperate to derive more reliable figures for natural sulfur emissions in the Yellow Sea region.

  • PDF

Nitrogen and Phosphorus Removal in Long Term Pilot Plant Operation Using Submerged Hollow Fiber Membrane and Ferric Chloride (침지형 중공사막과 철염을 이용한 Pilot MBR 공정의 장기운전에 따른 질소, 인 제거 특성)

  • Cheong, Jin-Ho;Heo, Yong-Rok;Im, Jeong-Dae;Lee, Eui-Sin;Park, Myung-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.11
    • /
    • pp.1168-1173
    • /
    • 2005
  • Pilot scale vertical-type membrane bioreactor was operated to examine the effect of $FeCl_3$ injection on the removal of organics, nitrogen and phosphorous, and additionally trans-membrane pressure (TMP) was observed. The membrane type was hollow fiber membrane with pore size of $0.25\;{\mu}m$, and the material was polytetrafluoroethylene (PTFE). The membrane permeate was continuously removed by a pump under a constant flux ($25\;L/m^2/h$). Air back-flushing technique were adopted to reduce fouling. As a result, TMP was increased more slowly than that of the operation without air back-flushing, During long-term operation, approximately 310 days, the injection of $FeCl_3$ was effective not only in removing phosphorous chemically but also in reducing TMP increase. Furthermore, while the average COD and T-N concentration of the effluent without $FeCl_3$ injection was 14.3 mg/L and 6.0 mg/L respectively, that of effluent with $FeCl_3$ was 11.3 mg/L and 6.0 mg/L respectively, which confirmed the effects of $FeCl_3$.

Temporal Variation of Water Quality of the Western Chinhae Bay in Summer (진해만 서부해역의 하계 수질의 시간변동 특성)

  • Cho Hyeon-Seo;Lee Dae-In;Yoon Yang-Ho;Lee Moon-Ok;Kim Dong-Myung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.1
    • /
    • pp.13-21
    • /
    • 2004
  • Temporal changes of Chl-α, physical and chemical factors were investigated by diurnal observation at 2-hour interval at three fixed stations in the western Chinhae Bay from 12 Aug. to 13 Aug. 1999. Difference of dissolved oxygen between surface and bottom layer was maximum when the thermocline were strong. Organic distribution such as COD was affected by the growth of phytoplankton. Limitting factor was nitrogen, that is, inorganic nitrogen plays a significant role on regulating the algal growth. Surface distribution of dissolved inorganic nitrogen was very low compared to bottom layer by uptake of organisms. Maximum value of Chl-α at station C2 and C11 were observed from subsurface layer, ranges of which exceeded possibility concentration of red tide outbreak, 10 mg/㎥. On the other hand, that of C15 exist at surface layer. In this area, DIN and DIP concentrations increased by input sources such as rainfall and benthic flux before the bloom of phytoplankton. Accumulation of phytoplankton occurred at subsurface layer by the rapid uptake of DIN, especially nitrate ion, when strong thermocline existed as approach to the afternoon, which led to the increase of organics in water column and oxygen deficiency water mass at bottom layer until late at evening. Since then, DIN increases gradually as water temperature decrease to minimum. The quantitative understanding of nitrogen of fluxed to and from the various sources is necessary for environmental management.

  • PDF

Intercomparison of Chamber Methods for Soil Respiration Measurement in a Phytotron System (식물 환경 조절 시스템에서의 토양 호흡 관측 챔버법의 비교 실험)

  • Chae Namyi;Kim Rae-Hyun;Hwang Taehee;Suh Sang-Uk;Lee Jae-Seok;Son Yowhan;Lee Dowon;Kim Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.1
    • /
    • pp.107-114
    • /
    • 2005
  • Soil CO₂ emission is one of the primary components in carbon balance of terrestrial ecosystems. In soil CO₂ flux measurements, chamber method is currently the most common technique. Prior to compare or synthesize the data collected from different chamber methods, potential biases must be quantified for each measurement system. We have conducted an intercomparison experiment among four closed dynamic chamber systems and an automatic open-closed chamber system in a temperature-controlled phytotron. Due to the disturbed CO₂ concentrations inside the phytotron during the measurements with closed dynamic chambers and the changes in soil water content, the interpretation of the data was difficult to quantify the biases of individual methods. However, the experiment provided not only valuable information on the performance characteristics of the five instruments to varying soil temperature and CO₂ concentration but also useful insights for better designs and strategy for future intercomparison in a controlled environment.

Fouling Characteristics in Submerged Membrane System of Two-Phase Anaerobic Reactor for Piggery Wastewater Treatment (축산폐수 처리를 위한 막결합형 이상 혐기성 반응조에서 여과막 저항특성)

  • Lee, Sang-Min;Jung, Jin-Young;Chung, Yun-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.3
    • /
    • pp.523-533
    • /
    • 2000
  • A two-phase anaerobic reactor with submerged membrane system was developed for increasing acidogen concentration and methane recovery. The membrane used was mixed esters of cellulose of $0.5{\mu}m$ pore size and $0.8m^2$ of effective surface area. The methanogenic reactor comprised of UASB (Upflow Anaerobic Sludge Blanket) and AF (Anaerobic Filter). COD removal efficiency was 70~80% and the methane content in the biogas increased up to 90% for the submerged membrane system in the anaerobic reactor. As the cake resistance of membrane caused a serious problem, stainless steal prefilters (40, 53, $63{\mu}m$) and air backwashing methods were applied to minimize the cake resistance effectively. Among the tested prefilters. the $63{\mu}m$ prefilter showed the best performance for reduction of cake resistance and a successful long-tern operation. By cleaning with alkali first and acidic solution later. the permeate flux decreased by long term operation was recovered to 89% of that with a new membrane.

  • PDF

A Study on Time Series Analysis of Membrane Fouling by using Genetic Algorithm in the Field Plant (유전자알고리즘을 이용한 막오염 시계열 예측 연구)

  • Lee, Jin Sook;Kim, Jun Hyun;Jun, Yong Seong;Kwak, Young Ju;Lee, Jin Hyo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.8
    • /
    • pp.444-451
    • /
    • 2016
  • Most research on membrane fouling models in the past are based on theoretical equations in lab-scale experiments. But these studies are barely suitable for applying on the full-scale spot where there is a sequential process such as filtration, backwash and drain. This study was conducted in submerged membrane system which being on operation auto sequentially and treating wastewater from G-water purification plant in Incheon. TMP had been designated as a fouling indicator in constant flux conditions. Total volume of inflow and SS concentration are independent variables as major operation parameters and time-series analysis and prediction of TMP were conducted. And similarity between simulated values and measured values was assessed. Final prediction model by using genetic algorithm was fully adaptable because simulated values expressed pulse-shape periodicity and increasing trend according to time at the same time. As results of twice validation, correlation coefficients between simulated and measured data were $r^2=0.721$, $r^2=0.928$, respectively. Although this study was conducted limited to data for summer season, the more amount of data, better reliability for prediction model can be obtained. If simulator for short range forecast can be developed and applied, TMP prediction technique will be a great help to energy efficient operation.

A Study on the Optical Internal Recycle Rate and MLSS Concentration of Membrane Coupled $A_2O$ Process for Wastewater Treatment (하수처리를 위한 막결합형 $A_2O$공정에서 최적 내부 순환율 및 MLSS 농도에 관한 연구)

  • Kim Kwan-Yeop;Kim Jin-Mo;Kim Hyung-Soo;Lee Sang-Bek;Park Eugene;Bae Sung-Soo
    • Membrane Journal
    • /
    • v.15 no.2
    • /
    • pp.114-120
    • /
    • 2005
  • The purpose of this study is to obtain practical information about membrane coupled $ A_2O$ system for muncipal wastewater treatment. A flat-plate microfiltration (MF) module with a pore size $0.25\;{\mu}m$ was submerged into the aeration basin and treated water was filtrated through the membrane by continuous suction with low pressure. The system was operated with synthetic wastewater to find operational parameters of internal recycle ratio and maximum MLSS showing best water quality and long-term stability. The internal recycle was defined as type 1 for aerobic to anoxic tank and type 2 for anoxic to anaerobic tank, respectively When the flux was maintained at $0.015\;m^3/m^2/hr$ (15 LMH) with 2Q type 1 internal recycle ratio, the optimal operational setting were 10 internal recycle ratio for type 2 and maximum MLSS of 11,000 mg/L among tested conditions. At this condition, removal efficiencies of BOD, CODcr, T-N and T-P showed $97.3\%,\;94.2\%,\;64.0\%,\;63.0\%$, respectively.

Characterization of Crosslinked Poly(vinyl alcohol) Membranes for the Preparation of Composite Membranes and Its Application to Pervaporation Separation (복합막 제조를 위한 가교된 폴리비닐알코올 막의 특성 평가와 이를 이용한 투과증발 분리)

  • 김연국;이정민;임지원;이영무
    • Membrane Journal
    • /
    • v.9 no.3
    • /
    • pp.157-162
    • /
    • 1999
  • In the crosslining reaction of poly(vinyl alcohoJ)(PVA) with sulfur-succinic acid which had been established in our previous work, reaction temperature, 15$0^{\circ}C$, was so high to collapse the pore struc¬tures in support membrane for the preparation of composite membrane. Therefore, the efforts have been focused on lowering of the reaction temperature to 100$^{\circ}$C by using a catalysis, HC!. The newly established crosslinking reaction was characterized through the analysis of the chemical and thermal properties. From these results, the optimum conditions for the membrane preparation couId be drawn as followings : (i) reac¬tion temperature, 100 $^{\circ}C$,(ii) reaction time, 90 min, (iii) the concentration of the catalysis (HCD, 1.5%. Com¬posite membranes were fabricated by coating a casting solution containing PYA, sulfur-succinic acid and HCl on a support membrane followed by crosslinking it at 10$0^{\circ}C$. The resulting membranes were applied to the pervaporation separation of methyl-tert-butyl ether(MTBE)/methanol (MeOH) mixtures at 30, 40, and 5O$^{\circ}C$. The flux of 5.09 g/$m^2$hr at 5O$^{\circ}C$ and the highest separation factor of 1622 were obtained, respectively.

  • PDF