• 제목/요약/키워드: flux concentration

검색결과 924건 처리시간 0.023초

Iontophoretic Transport of Donepezil Hydrochloride through Skin: Flux Enhancement by Chemical Enhancer and Iontophoresis

  • Oh, Seaung-Youl
    • Journal of Pharmaceutical Investigation
    • /
    • 제41권6호
    • /
    • pp.337-345
    • /
    • 2011
  • The objective of this work is to investigate the effect of chemical enhancer and current on the flux of donepezil hydrochloride (DH) through skin. Ethanol and N-methyl pyrrolidone (NMP) were used as chemical enhancers in combination with iontophoresis. We also have studied the effect of pH on flux and evaluated the role of electroosmosis. In vitro flux study was performed at $33^{\circ}C$, using side-by-side diffusion cell and full thickness hairless mouse skin. Passive flux of DH without enhancer was very small. As the concentration of enhancer increased, passive flux increased. After current application, flux increased markedly and the time to reach maximum decreased. Without enhancer, maximum flux was about 50 fold larger than that obtained without current. These results indicate that electromigration is playing a major role for the transport. As the enhancer concentration increased, flux also increased. NMP and ethanol increased not only the passive delivery, but also the iontophoretic delivery. Flux results indicate that ethanol has better ability than NMP in enhancing the transport of DH. The magnitudes of increase in flux by these enhancers indicate that there is a large synergistic effect in flux enhancement. Flux results from pH study showed that electroosmotic flow is reversed at low pH and the flux is hindered. These results provided some information on the flux enhancing ability of ethanol and NMP in combination with iontophoresis. The data also provided some mechanistic insights into the role of electromigration and electroosmosis on flux through skin.

케토프로펜의 경피전달 및 전기삼투압의 영향 (Transdermal Delivery of Ketoprofen and the Effect of Electroosmosis)

  • 오승열
    • Journal of Pharmaceutical Investigation
    • /
    • 제34권6호
    • /
    • pp.491-497
    • /
    • 2004
  • We investigated some important factors which affect the transdermal flux of ketoprofen, a nonsteroidal anti-inflammatory agent, as a first step to provide some basic knowledge for the development of a iontophoretic transdermal patch system. Factors such as current density, polarity, buffer (HEPES) and electrolyte concentration and pH were studied using hairless mouse skin. The effect of poly(L-lysin), which is known to affect the electro-osmotic flow through skin, on flux was also studied. Passive flux was about $20\;{\mu}g/cm^2hr$ at pH 4.0, but was negligible at pH 7.4 where all ketoprofen molecules dissolved are ionized (ketoprofen pKa=5.94). At pH 4.0, application of anodal current increased the flux further above the passive level, however anodal flux at pH 7.4 was much smaller than passive flux at pH 4.0. The application of cathodal current at pH 4.0 increased the average flux to $30-40\;{\mu}g/cm^2hr$, depending on the current density applied. At pH 7.4, cathodal flux was only about $5\;{\mu}g/cm^2hr$. Decrease in buffer and electrolyte concentration increased this cathodal flux about 10 fold. However decrease in HEPES buffer concentration 100 fold did not affect the flux. Anodal flux of acetaminophen was much larger than cathodal flux, indicating that electroosmotic flow can be playing an important role in the flux. Poly(L-lysin) increased the cathodal flux at pH 7.4. These results provide some important insights into the mechanism of transdermal flux of ketoprofen and the role of electroosmotic flow.

전해수를 이용한 견섬유 정련 및 세리신 회수(II)-분리막에 의한 세리신 농축을 중심으로- (The Degumming and Sericin Recovery of the Silk fabric Using the Electrolytic Water(II))

  • 배기서;이태상;노덕길;홍영기
    • 한국염색가공학회지
    • /
    • 제16권4호
    • /
    • pp.10-18
    • /
    • 2004
  • In this work, Aqueous sericin solution was prepared by degumming process with electrolytic reduction water. Then, the microfiltration and ultrafiltration systems were applied to the concentration of aqueous sericin solution. The objective of this study was to select the optimum operating condition among the different pressure. The permeate flux and rejection ratio were observed with time, pressure, flow rate and concentration. and, the wastewater and permeated water quality values such as pH, BOD, COD, and NH levels were measured. In order to see the influence of electrolytic reduction water, the flux of pure water and electrolytic reduction water by PVDF22(MF) and PS100(UF) membrane was measured. In microfiltration system, the relative flux reduction decreased rapidly to 0.02 in the 30min, as the concentration polarization and gel layer formation were increased. and then the sericin concentration rejection ratio was 40%. In ultrafiltration system, the permeate flux decreased with time and concentration, and increased with the operating pressure and flow rate. Optimal condition in PS100 membrane system for sericin concentration was operating pressure 1.464kgf/$cm^24, operating flow rate $7\ell/min at\; 40^{\circ}C$. At that time, sericin concentration rejection ratio was 83% respectably. The sericin solution was concentrated from 0.1wt% solution to 0.2 wt % solution during about 2 hrs by the UF filteration membrane system.

Dynamic Flux Chamber를 이용한 소사육시설의 암모니아 플럭스 및 배출계수 평가 (Estimation of Ammonia Flux and Emission Factor from Cattle Housing Using Dynamic Flux Chamber)

  • 사재환;전의찬
    • 한국환경보건학회지
    • /
    • 제36권1호
    • /
    • pp.33-43
    • /
    • 2010
  • Atmospheric ammonia is a very important constituent of the environment because it is the dominant alkaline gaseous species present in the atmosphere. Ammonia is known to affect ecosystems at relatively low concentration. In this study flux profiles of ammonia emitted from the cattle housing were evaluated using a dynamic flux chamber (DFC). We have developed the emission factor of $NH_3$ from the cattle housing. Analysis of ammonia flux variation was made with respect to such variables as manure surface temperature, pH, and ammonium concentration. Ammonia flux has been measured up to summer in 2007 at calf and cattle housing. In the fall, average ammonia flux from calf and cattle housing was estimated as 1.406 (${\pm}0.947$) and 1.534 ((${\pm}0.956$) $mg\;m^2\;min^1$, respectively. In the winter, average ammonia flux was estimated 1.060 ((${\pm}0.569$) from the calf housing and 1.216 ((${\pm}0.655$) $mg\;m^2\;min^1$ from the cattle housing. The correlation coefficient (R=0.732) between ammonia flux and manure surface ammonium concentration exhibited stronger relationship than manure surface pH and temperature. In the fall, ammonia emission factor from calf and cattle housing was estimated as 3.94 ((${\pm}2.66$) and 11.41 ((${\pm}5.86$) kg-$NH_3$ animal$^1\;yr^1$, respectively. In the winter, ammonia average flux was estimated as 2.89 ((${\pm}1.59$) from the calf housing and 6.51 ((${\pm}3.67$) kg-$NH_3$ animal$^1\;yr^1$ from the cattle housing.

성장호르몬방출펩타이드-6 (GHRP-6)의 경피투과 (Iontophoretic Transport of GHRP-6)

  • 최보경;오승열
    • Journal of Pharmaceutical Investigation
    • /
    • 제31권4호
    • /
    • pp.273-279
    • /
    • 2001
  • The purpose of this study is to characterize the iontophoretic transport of growth hormone releasing peptides (GHRP-6) through hairless mouse skin from aqueous solution. The effect of various factors, such as pH, poloarity, current profile, current density, current duration, ionic strength, drug concentration, and enhancer application was studied to obtain basic knowledge on the transport. We have also studied the stability of GHRP-6 in solution with/without current. The donor chamber was filled with phosphate buffer solution containing GHRP-6 and the receptor chamber was filled with phosphate buffer solution (pH 7.4). Ag/AgCl electrode was used for their stability and reversibility. At a predetermined time interval, sampling was made and the concentration of drug was analysed using HPLC system. The results showed that, compared to passive flux, the total amount of drug transported increased markedly by the application of anodal current. Cathodal flux was similar to passive flux. Flux increased with the current density, the duration of current application and drug concentration. The effect of enhancers on the flux was studied using hydrophilic (5% N-methyl pyrrolidone) and hydrophobic (5% propylene glycol monolaurate, 5% oleic acid) enhancers. Application of enhancer also increased the flux.

  • PDF

이온토포레시스를 이용한 2-인산 비타민 C의 피부투과 (Iontophoretic Delivery of Vitamine C 2-Phosphate)

  • 김수연;오승열
    • Journal of Pharmaceutical Investigation
    • /
    • 제34권3호
    • /
    • pp.201-207
    • /
    • 2004
  • In order to develop an optimum formulation for iontophoretic flux of vitamine C 2-phosphate (VCP), we have prepared three different hydrogels containing VCP, using carbopol, HPMC and poloxamer, and iontophoretic flux through hairless mouse skin from these hydrogels was carried out. Drug stability in phosphate buffer (PBS) solution (pH 7.4) with and without current application was studied. The effect of various factors, such as drug concentration, current density, and current profile on skin flux was also investigated. Stability study indicated that VCP in PBS (pH 7.4) solution was stable under the experimental condition, irrespective of the presence of current. Cathodal delivery increased the flux markedly, whereas the anodal and passive flux was negligible. Thus, cathodal delivery was used in all experiments. Flux increased as the drug concentration (2.5, 5.0, 7.5%) and current density $(0.2,\;0.4,\;0.6\;mA/cm^2)$ increased. Pulsed application of the current showed lower flux than constant current application. The results obtained suggest that VCP can be delivered into the skin and the amount delivered can be controlled by varying hydrogel, current density, drug concentration and current application profile.

마이크로핀관 증발기내 전열 성능에 미치는 냉동기유의 영향 (Effect of refrigeration lubricants on the heat transfer performance in the microfin tube evaporator)

  • 조금남;태상진
    • 설비공학논문집
    • /
    • 제11권1호
    • /
    • pp.61-72
    • /
    • 1999
  • The present study experimentally investigated the effect of refrigeration lubricant on the heat transfer performance in the straight sections and U-bend of a microfin tube evaporator by using R-22/mineral oil and R-407C/POE oil. The apparatus consisted of test section with U-bend, preheater, condenser, oil injection and sampling devices, magnetic pump, mass flow meter etc. The experimental parameters were oil concentration of 0 to 5 wt%, inlet quality of 0.1 to 0.5, mass flux of 219 and $400kg/m^2s$ and heat flux of 10 and $20kW/m^2$. The effects of parameters on the heat transfer coefficients were large in the order of inlet quality, mass flux and heat flux as oil concentration got increased. As oil concentration was increased, heat transfer coefficients were continuously decreased for R-22 and increased by 3% up to the concentration of 1% and then decreased for R-407C under the condition of large inlet quality, and small mass flux and heat flux. But, the heat transfer coefficients were increased up to the concentration of 3% and then decreased for both R-22 and R-407C refrigerants under the opposite conditions. The variation of enhancement factors for R-407C was under 50% of that for R-22 and the variation with respect to the positions in the test section was small. The pressure drops were increased for both R-22 and R-407C refrigerants as oil concentration was increased. The pressure drops for R-407C were smaller by the maximum of 18% than those for R-22.

  • PDF

Application of Box Wilson experimental design method for removal of acid red 95 using ultrafiltration membrane

  • Akdemir, Ezgi Oktav
    • Membrane and Water Treatment
    • /
    • 제9권5호
    • /
    • pp.309-315
    • /
    • 2018
  • The applicability of the ultrafiltration process for color removal from dye-containing water has been examined in this study. The optimization of major process variables, such as dye concentration, chitosan concentration and transmembrane pressure on permeate flux and color removal efficiency was investigated. To find the most appropriate results for the experiment, the Box-Wilson experimental design method was employed. The results were correlated by a response function and the coefficients were determined by regression analysis. Permeate flux variation and color removal efficiency determined from the response functions were in good agreement with the experimental results. The optimum conditions of chitosan concentration, dye concentration and pressure were 50 mg/l, 50 mg/l and 3 bars, respectively for the highest permeate flux. On the other hand, optimum conditions for color removal efficiency were determined as 50 mg/l of dye concentration, 50 mg/l of chitosan concentration and 1 bar of pressure.

세라믹막을 이용한 Lactobacillus cell의 농축 공정의 특성 (Characteristics of the Concentration Process of Lactobacillus Cell Using a Ceramic Membrane)

  • 이용택;송민호
    • 멤브레인
    • /
    • 제14권3호
    • /
    • pp.192-200
    • /
    • 2004
  • 본 연구에서는 유기질막에 비해 안정성이 우수하고 사용수명이 긴 세라믹 막을 이용하여 혐기성 Lactobacillus 균주의 농축에 관해서 연구하였다. Cell harvesting (CH)에 영향을 주는 인자로 막투과 압력, 온도, 선속도 등에 대해 조사하였으며 세라믹 막을 이용하여 농축율 변화에 따른 플럭스와 TMP (transmembrane pressure)의 변화, 일정 VCF(volumetric concentration factor)에서 TMP변화 등의 최적조건에 관해 알아보았다. 그 결과 플럭스는 TMP, 선속도, VCF가 증가함에 따라 투과수량도 증가함을 알 수 있었다. 온도가 증가할수록 점도에 의해 초기 플럭스도 증가하지만 시간이 경과함에 따라 막 표면의 겔층의 형성으로 온도의 영향은 미미하였다. 또한 농축비 이하의 일정한 VCF에서 운전할 경우 플럭스가 안정적임을 알 수 있었다. 선속도 5 m/s, 공급액의 온도 $37^{\circ}C$, TMP 1 bar에서 6∼8 h 운전할 경우 PS 406 원액의 생균수는 4.9{\times}10^9$으로 약 8배 농축됨을 알 수 있었다.

하이드로겔을 이용한 비타민 C-인산염의 이온토포레시스 피부투과 (Iontophoretic Delivery of Vitamine C-2-phosphate from Carbopol Hydrogel)

  • 오승열
    • Journal of Pharmaceutical Investigation
    • /
    • 제37권3호
    • /
    • pp.159-166
    • /
    • 2007
  • In order to develop an optimum formulation for iontophoretic delivery of vitamine C-2-phosphate (VCP) from Carbopol hydrogel, we have investigated various factors which can affect the iontophoretic flux through skin. Such factors as drug concentration, current density, current profile, current duration, ionic strength, pH and percutaneous enhancers (ethanol, glycerine, propylene glycerol, sorbitol, urea) were studied. Compared to the flux by passive or anodal delivery, the flux by cathodal delivery increased markedly, and thus, only cathodal delivery was used in the rest of the flux experiments. Flux increased linearly as the drug concentration and current density increased. As the duration of current application increased from 30 min to 120 min, flux increased linearly, however the AUC was not directly proportional to the applied amount of current. Flux also increased as the pH increased, possibly due to the increase in ionization of phosphate group. As the ionic strength increased, flux decreased. No significant increase in flux was observed after enhancer application, indicating that the effect of current on flux is dominating over the effect of percutaneous enhancers (P>0.05). These results provide important informations that are needed for optimal formulation of iontophortic delivery for VCP.