• Title/Summary/Keyword: flutter response

Search Result 68, Processing Time 0.023 seconds

Study on the Prevention of Pad Fluttering with the Variation of Preload in a Tilting Pad Journal Bearing (예압 변경을 통한 틸팅패드 저널베어링의 패드 Fluttering 방지에 관한 연구)

  • 박철현;김재실;하현천;양승헌
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.4
    • /
    • pp.344-351
    • /
    • 2004
  • Tilling pad journal bearings have been widely used to support the rotors of the high rotating machinery such as steam and gas turbines owing to their inherent dynamic stability characteristics. However, serious bearing problems such as fatigue damage in the upper unloaded pad, the break of locking pins and the wear of pinholes etc. by pad fluttering are frequently taken place in the actual steam turbines. The purpose of this paper is to investigate the mechanism of pad fluttering and to suggest the useful design guideline(application of preload, m) for the purpose of preventing bearing problems by pad fluttering in a tilting pad journal bearing. It is estimated that upper pad is easy to flutter because the film shape of the upper pad is diverged by moment acting on pivot point. This paper suggests that effective preload range(m $\geq$ 0.5) in order to be statically loaded pad under all operating conditions. Also, design modified bearing is suggested for the adjustment in actual steam turbines. And bearing and rotor dynamic analysis are performed to identify bearing characteristics and to verify the reliability of rotor-bearing system.

UNSTEADY AERODYNAMIC ANALISES OF SPACE ROCKET CONFIGURATION CONSIDERING PITCHING MOTION (피칭운동을 고려한 우주발사체 형상의 천음속 비정상 유동해석)

  • Kim, D.H.;Kim, Y.H.;Kim, D.H.;Yoon, S.H.;Kim, G.S.;Jang, Y.H.;Kim, S.H.
    • Journal of computational fluids engineering
    • /
    • v.16 no.1
    • /
    • pp.53-59
    • /
    • 2011
  • In this study, steady and unsteady aerodynamic analyses of a huge rocket configuration have been conducted in a transonic flow region. The launch vehicle structural response are coupled with the transonic flow state transitions at the nose of the payload fairing. Before performing the coupled fluid-structure transonic aeroealstic simulations transonic aerodynamic characteristics are investigated for the pitching motions of the rocket at finite angle-of-attack. An unsteady CFD analysis method with a moving grid technique based on the Reynolds-averaged Navier-Stokes equations with the k-w SST transition turbulence model is applied to accurately predict the transonic loads of the rocket at pitching motion. It is shown that the fluctuating amplitude of the lateral aerodynamic loads imposed on the rocket due to the pitching motion can be significantly increased in the transonic flow region.

Wing Design Optimization of a Solar-HALE Aircraft

  • Lim, JaeHoon;Choi, Sun;Shin, SangJoon;Lee, Dong-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.3
    • /
    • pp.219-231
    • /
    • 2014
  • We develop a preliminary design optimization procedure in this paper regarding the wing planform in a solar-powered high-altitude long-endurance unmanned aerial vehicle. A high-aspect-ratio wing has been widely adopted in this type of a vehicle, due to both the high lift-to-drag ratio and lightweight design. In the preliminary design, its characteristics need to be addressed correctly, and analyzed in an appropriate manner. In this paper, we use the three-dimensional Euler equation to analyze the wing aerodynamics. We also use an advanced structural modeling approach based on a geometrically exact one-dimensional beam analysis. Regarding the structural integrity of the wing, we determine detailed configuration parameters, specifically the taper ratio and the span length. Next, we conduct a multi-objective optimization scheme based on the response surface method, using the present baseline configuration. We consider the structural integrity as one of the constraints. We reduce the wing weight by approximately 25.3 % from that in the baseline configuration, and also decrease the power required approximately 3.4 %. We confirm that the optimized wing has sufficient flutter margin and improved static longitudinal/directional stability characteristics, as compared to those of the baseline configuration.

Model Establishment of a Deployable Missile Control Fin Using Substructure Synthesis Method (부구조물 합성법을 이용한 접는 미사일 조종날개 모델 수립)

  • Kim, Dae-Kwan;Bae, Jae-Sung;Lee, In;Han, Jae-Hung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.7 s.100
    • /
    • pp.813-820
    • /
    • 2005
  • A deployable missile control fin has some structural nonlinearities because of the worn or loose hinges and the manufacturing tolerance. The structural nonlinearity cannot be eliminated completely, and exerts significant effects on the static and dynamic characteristics of the control fin. Thus, It is important to establish the accurate deployable missile control fin model. In the present study, the nonlinear dynamic model of 4he deployable missile control fin is developed using a substructure synthesis method. The deployable missile control fin can be subdivided Into two substructures represented by linear dynamic models and a nonlinear hinge with structural nonlinearities. The nonlinear hinge model is established by using a system identification method, and the substructure modes are improved using the Frequency Response Method. A substructure synthesis method Is expanded to couple the substructure models and the nonlinear hinge model, and the nonlinear dynamic model of the fin is developed. Finally, the established nonlinear dynamic model of the deployable missile control fin is verified by dynamic tests. The established model is In good agreement with test results, showing that the present approach is useful in aeroelastic stability analyses such as time-domain nonlinear flutter analysis.

Study on the Mechanism of pad Fluttering and the Prevention of pad Fluttering with the Variation of Preload in a Tilting Pad Journal Bearing (틸팅패드 저널베어링의 패드 fluttering 메커니즘 및 예압 변경을 통한 패드 fluttering 방지에 관한 연구)

  • 박철현;김재실;하현천;양승헌
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.291-297
    • /
    • 2003
  • Fluid film tilting pad journal bearings are widely used for large steam turbines. However, bearing problems by pad fluttering, such as fatigue damage in the upper unloaded pad, the break of locking pins and the wear of pinholes etc., are frequently taken place in the actual steam turbines. The purpose of the present work is to investigate on the mechanism of pad fluttering and the prevention of pad fluttering with the variation of preload(m) in a tilting pad journal bearing. It is estimated that upper pad is easy to flutter because the film shape of upper pad is diverged one from the analysis of moment direction acting on pivot point. Effective preload range in order to be statically loaded pad under all operating conditions is suggested as m>0.5. Also, as a bearing that can be prevented pad fluttering, design modified bearing is suggested. For the adjustment in actual steam turbines, bearing and rotor dynamic analysis are performed to identify bearing characteristics and to verify the reliability of rotor-bearing system.

  • PDF

Papers : Thermally Induced Vibration Analysis of Flexible Spacecraft Appendages (논문 : 위성체 유연 구조물의 열진동 해석)

  • Yun,Il-Seong;Song,O-Seop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.56-64
    • /
    • 2002
  • Thermally induced vibration response of composite thin-walled beams is investigated in this paper. The flexible spacecraft appendages modeled as thin-walled beam incorporates a number of nonclassical effects of transverse shear, primary and secondary warping, rotary inertia and anisotropy of constitute materials. Thermally induced vibration responds characteristics of a composite thin walled beam exhibiting the circumferantially uniform system(CUS) configuration are exploited in connection with the structural flapwise bending lagwise bending coupling resulting from directioal properties of fiber reinforced composite materials and ply stacking sequence. A coupled thermal structure gradient is investigated.

Wind Tunnel Aeroelastic Studies of Steel Cable-stayed Bridge with Wind Cable and Temporary Support (강 사장교 가설 중 임시 제진방법에 대한 풍동실험 연구)

  • Cho, Jae Young;Shim, Jong Han;Lee, Hak Eun;Kwon, O Whon
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.1
    • /
    • pp.33-45
    • /
    • 2006
  • Cable-stayed bridges are more inherently vulnerable to wind during the erection stages than when they are already being used. Even if a bridge that is already being used is aerodynamically stable, it is prone to having aerodynamic instabilities within the design wind speed during construction. Therefore, when the bridge's designers deliberate on the method they will use in constructing the bridge, they must likewise come up with a suitable plan to ensure the stability of the bridge during its erection (e.g., conducting a wind-tunnel investigation). This paper describes the aeroelastic full-bridge model tests that were conducted to investigate the aerodynamic behavior of the bridge during erection, with emphasis on aerodynamic stability and the mitigation of the buffeting response through temporary stabilization. The aerodynamic performance of a cable -stayed bridge with a main span of 50 m was studied in its completed stage and in two erection stages, corresponding 50% and 90% completion, respectively. In the 50% erection stage tests, a balanced cantilever configuration, with wind cable and temporary support at the tower, was conducted. The system that was determined to be most effective in reducing wind action on the bridge during construction was proposed in the paper, based on the results of the comparative study that was conducted.

A Study on Buffeting Responses of a In-service Steel Cable-stayed Bridge Using Full-scale Measurements (실측 데이터를 이용한 공용중인 강사장교의 버페팅 응답 분석)

  • Lee, Deok Keun;Kong, Min Joon;You, Dong Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.349-359
    • /
    • 2016
  • In order to analytically evaluate buffeting responses, the analysis of wind characteristics such as turbulence intensity, turbulence length, gust, roughness coefficient, etc must be a priority. Static aerodynamic force coefficients, flutter coefficients, structural damping ratios, aerodynamic damping ratios and natural frequencies affect the analytical responses. The bridge interested in this paper has being been used for 32 years. As the time passes, current terrain conditions around the bridge are different markedly from the conditions it was built 32 years ago. Also, wind environments were considerably varied by the climate change. For this reason, it is necessary to evaluate the turbulence intensity, length, spectrum and roughness coefficient of the bridge site from full-scale measurements using the structural health monitoring system. The evaluation results indicate that wind characteristics of bridge site is analogous to that of open terrain although the bridge is located on the coastal area. To calculate buffeting responses, the analysis variables such as damping ratios, static aerodynamic force coefficients and natural frequency were evaluated from measured data. The analysis was performed with regard to 4 cases. The evaluated variables from measured data are applied to the first and second analysis cases. And the other analysis cases were performed based on Design Guidelines for Steel Cable Supported Bridges. The calculated responses of each analysis cases are compared with the buffeting response measured at less than 25m/s wind speed. It is verified that the responses by the numerical analysis applying the estimated variables based on full-scale measurements are well agreed with the measured actual buffeting responses under wind speed 25m/s. Also, the extreme wind speed corresponding to a recurrence interval 200 years is derived from Gumbel distribution. The derived wind speed for return period of 200 years is 45m/s. Therefore the buffeting responses at wind speed 45m/s is determined by the analysis applying the estimated variables.