Open decks are a widely used deck configuration in long-span cable-stayed bridges; however, incorporating aerodynamic countermeasures are advisable to achieve better aerodynamic performance than a bluff body deck alone. A sectional model of an open deck cable-stayed bridge with a main span of 400 m was selected to conduct a series of wind tunnel tests. The influences of five practical aerodynamic countermeasures on flutter and vortex-induced vibration (VIV) performance were investigated and are presented in this paper. The results show that an aerodynamic shape selection procedure can be used to evaluate the flutter stability of decks with respect to different terrain types and structural parameters. In addition, the VIV performance of $\prod$-shaped girders for driving comfortableness and safety requirements were evaluated. Among these aerodynamic countermeasures, apron boards and wind fairings can improve the aerodynamic performance to some extent, while horizontal guide plates with 5% of the total deck width show a significant influence on the flutter stability and VIV. A wind fairing with an angle of $55^{\circ}C$ showed the best overall control effect but led to more lock-in regions of VIV. The combination of vertical stabilisers and airflow-depressing boards was found to be superior to other countermeasures and effectively boosted aerodynamic performance; specifically, vertical stabilisers significantly contribute to improving flutter stability and suppressing vertical VIV, while airflow-depressing boards are helpful in reducing torsional VIV.
Xin-Jun Zhang;Fu-Bing Ying;Chen-Yang Zhao;Xuan-Rui Pan
Wind and Structures
/
v.37
no.1
/
pp.39-56
/
2023
To ensure the wind stability of a long-span suspension bridge during deck erection under skew wind, based on the aerostatic and self-excited aerodynamic force models under skew wind, a computational approach of refined flutter analysis for long-span bridges under skew wind is firstly established, in which the effects of structural nonlinearity, the static wind action and full-mode coupling etc are fully considered, and the corresponding computational procedure is programmed. By taking the Runyang suspension bridge over the Yangtze River as example, the flutter stability of the bridge in completion under skew wind is then analyzed with the aerodynamic parameters of a similar bridge deck measured from the sectional model wind tunnel test under skew wind. Finally, through simulating the girder segments erected symmetrically from the midspan to towers, from the towers to midspan and simultaneously from the towers and midspan to the quarter points, respectively, the evolutions of flutter stability limits during the deck erection under skew wind are investigated numerically, the favorable aerodynamically deck erection sequence is proposed, and the influences of skew wind and static wind effect on the flutter stability of suspension bridge under construction are ascertained.
Rational Functions are used to express the self-excited aerodynamic forces acting on a flexible structure for use in time-domain flutter analysis. The Rational Function Approximation (RFA) approach involves obtaining of these Rational Functions from the frequency-dependent flutter derivatives by using an approximation. In the past, an algorithm was developed to directly extract these Rational Functions from wind tunnel section model tests in free vibration. In this paper, an algorithm is presented for direct extraction of these Rational Functions from section model tests in forced vibration. The motivation for using forced-vibration method came from the potential use of these Rational Functions to predict aerodynamic loads and response of flexible structures at high wind speeds and in turbulent wind environment. Numerical tests were performed to verify the robustness and performance of the algorithm under different noise levels that are expected in wind tunnel data. Wind tunnel tests in one degree-of-freedom (vertical/torsional) forced vibration were performed on a streamlined bridge deck section model whose Rational Functions were compared with those obtained by free vibration for the same model.
A long suspension bridge is often located within a unique wind environment, and strong winds at the site seldom attack the bridge at a right angle to its long axis. This paper thus investigates the buffeting response of long suspension bridges to skew winds. The conventional buffeting analysis in the frequency domain is first improved to take into account skew winds based on the quasi-steady theory and the oblique strip theory in conjunction with the finite element method and the pseudo-excitation method. The aerodynamic coefficients and flutter derivatives of the Tsing Ma suspension bridge deck under skew winds, which are required in the improved buffeting analysis, are then measured in a wind tunnel using specially designed test rigs. The field measurement data, which were recorded during Typhoon Sam in 1999 by the Wind And Structural Health Monitoring System (WASHMS) installed on the Tsing Ma Bridge, are analyzed to obtain both wind characteristics and buffeting responses. Finally, the field measured buffeting responses of the Tsing Ma Bridge are compared with those from the computer simulation using the improved method and the aerodynamic coefficients and flutter derivatives measured under skew winds. The comparison is found satisfactory in general.
This study investigates the effects of a bridge deck's width-to-depth (B/H) ratio and turbulence on buffeting response and flutter critical wind speed of long-span bridges by conducting section model tests. A streamlined box section and a plate girder section, each with four B/H ratios, were tested in smooth and turbulent flows. The results show that for the box girders, the response increases with the B/H ratio, especially in the vertical direction. For the plate girders, the vertical response also increases with the B/H ratio. However, the torsional response decreases as the B/H ratio increases. Increasing the B/H ratio and intensity of turbulence tends to improve the bridge's aerodynamic stability. Experimental results obtained from the section model tests agree reasonably with the calculated results obtained from a numerical analysis.
The aerodynamic performance of long-span cable-stayed bridges is much dependent on its geometrical configuration and countermeasure strategies. In present study, the aerodynamic performance of three composite cable-stayed bridges with different tower configurations and passive aerodynamic countermeasure strategies is systematically investigated by conducting a series of wind tunnel tests in conjunction with theoretical analysis. The structural characteristics of three composite bridges were firstly introduced, and then their stationary aerodynamic performance and wind-vibration performance (i.e., flutter performance, VIV performance and buffeting responses) were analyzed, respectively. The results show that the bridge with three symmetric towers (i.e., Bridge I) has the lowest natural frequencies among the three bridges, while the bridge with two symmetric towers (i.e., Bridge II) has the highest natural frequencies. Furthermore, the Bridge II has better stationary aerodynamic performance compared to two other bridges due to its relatively large drag force and lift moment coefficients, and the improvement in stationary aerodynamic performance resulting from the application of different countermeasures is limited. In contrast, it demonstrates that the application of both downward vertical central stabilizers (UDVCS) and horizontal guide plates (HGP) could potentially significantly improve the flutter and vortex-induced vibration (VIV) performance of the bridge with two asymmetric towers (i.e., Bridge III), while the combination of vertical interquartile stabilizers (VIS) and airflow-depressing boards (ADB) has the capacity of improving the VIV performance of Bridge II.
The suppression of aerodynamic response of long-span suspension bridges during erection and after completion by using single TMD and multi TMD is presented in this paper. An advanced finite-element-based aerodynamic model that can be used to analyze both flutter instability and buffeting response in the time domain is also proposed. The frequency-dependent flutter derivatives are transferred into a time-dependent rational function, through which the coupling effects of three-dimensional aerodynamic motions under gusty winds can be accurately considered. The modal damping of a structure-TMD system is analyzed by the state-space approach. The numerical examples are performed on the Akashi Kaikyo Bridge with a main span of 1990 m. The bridge is idealized by a three-dimensional finite-element model consisting of 681 nodes. The results show that when the wind velocity is low, about 20 m/s, the multi TMD type 1 (the vertical and horizontal TMD with 1% mass ratio in each direction together with the torsional TMD with ratio of 1% mass moment of inertia) can significantly reduce the buffeting response in vertical, horizontal and torsional directions by 8.6-13%. When the wind velocity increases to 40 m/s, the control efficiency of a multi TMD in reducing the torsional buffeting response increases greatly to 28%. However, its control efficiency in the vertical and horizontal directions reduces. The results also indicate that the critical wind velocity for flutter instability during erection is significantly lower than that of the completed bridge. By pylon-to-midspan configuration, the minimum critical wind velocity of 57.70 m/s occurs at stage of 85% deck completion.
Nikitas, Nikolaos;Macdonald, John H.G.;Jakobsen, Jasna B.
Wind and Structures
/
v.14
no.3
/
pp.221-238
/
2011
The estimated response of large-scale engineering structures to severe wind loads is prone to modelling uncertainties that can only ultimately be assessed by full-scale testing. To this end ambient vibration data from full-scale monitoring of the historic Clifton Suspension Bridge has been analysed using a combination of a frequency domain system identification method and a more elaborate stochastic identification technique. There is evidence of incipient coupling action between the first vertical and torsional modes in strong winds, providing unique full-scale data and making this an interesting case study. Flutter derivative estimation, which has rarely previously been attempted on full-scale data, was performed to provide deeper insight into the bridge aerodynamic behaviour, identifying trends towards flutter at higher wind speeds. It is shown that, as for other early suspension bridges with bluff cross-sections, single-degree-of-freedom flutter could potentially occur at wind speeds somewhat below requirements for modern designs. The analysis also demonstrates the viability of system identification techniques for extracting valuable results from full-scale data.
Aerodynamic measures have been widely used for improving the flutter stability of long-span bridges, and this paper focuses their windproof ability to improve the wind environment for vehicles. The whole wind environment around a long-span bridge located in high altitude mountainous areas is first studied. The local wind environment above the deck is then focused by two perspectives. One is the windproof effects of aerodynamic measures, and the other is whether the bridge with aerodynamic measures meets the requirement of flutter stability after installing extra wind barriers in the future. Furthermore, the effects of different wind barriers are analyzed. Results show that aerodynamic measures exert potential effects on the local wind environment, as the vertical stabilizer obviously reduces wind velocities behind it while the closed central slot has limited effects. The suggested aerodynamic measures have the ability to offset the adverse effect of the wind barrier on the flutter stability of the bridge. Behind the wind barrier, wind velocities decrease in general, but in some places incoming flow has to pass through the deck with higher velocities due to the increase in blockage ratio. Further comparison shows that the wind barrier with four bars is optimal.
This paper aims to describe the aerodynamic vibrations of various structural elements of bridges, which are particular issues at present. The aerodynamic countermeasures for those vibrations are also discussed considering the generation mechanisms of the aerodynamic instabilities. In this paper, an example of vortex-induced oscillation of bridge deck and its lesson are discussed. Next, the wind-induced cable vibration and its aerodynamic countermeasures are reviewed. Then, the aerodynamic characteristics on two edge girders and their feasibility for application to long span cable-stayed bridges are considered. Furthermore, the bridge decks for future long span bridges are proposed and their aerodynamic characteristics are also discussed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.