• Title/Summary/Keyword: fluoride ion

Search Result 220, Processing Time 0.03 seconds

Studies on the Adsarption Characteristics of Fluoride Ion-Containing Wastewater by Employing Waste Oyster Shell as an Adsorbent (폐굴껍질을 흡착제로 한 불소폐수 처리특성에 관한 연구)

  • Lee, Jin-Suk;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.2
    • /
    • pp.222-227
    • /
    • 2007
  • The adsorption features of fluoride ion on the oyster shell have been investigated for the purpose of the employment of waste oyster shell as an adsorbent for the treatment of fluoride ion-containing wastewater. The major component of oyster shell was examined to be Ca with minor components of Na, Si, Mg, Al, and Fe. As the initial concentration of fluoride ion was raised, its absorbed amount was enhanced at equilibrium, however, the adsorption ratio of fluoride ion compared with its initial concentration was shown to be decreased. Also, adsorption of fluoride ion onto the oyster shell resulted in the formation of $CaF_2$ in the morphological structure of adsorbent. Kinetic analysis showed that the adsorption reaction of fluoride ion generally followed a second order reaction with decreasing rate constant with the initial concentration of adsorbate. Freundlich model agreed well with the adsorption behavior of fluoride ion at equilibrium and the adsorption reaction of fluoride ion was examined to be endothermic. Several thermodynamic parameters for the adsorption reaction were calculated based on thermodynamic equations and the activation energy for the adsorption of fluoride ion onto oyster shell was estimated to be ca. 13.589 kJ/mole.

The Influence of Aqueous Ionic, Condition on the Adsorption Features of Fluoride Ion on Waste Oyster Shell (수중 이온 환경이 폐굴껍질에 대한 불소 이온의 흡착 양상에 미치는 영향)

  • Lee, Jin-Sook;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.3
    • /
    • pp.314-318
    • /
    • 2007
  • The feasibility of the employment of waste oyster shell as an adsorbent for fluoride ion has been tested by considering the effect ionic condition on the adsorption of fluoride ion on oyster shell. The adsorption capacity of oyster shell for fluoride ion was found not to be significantly influenced by the ionic strength of aqueous environment. The existence of complexing agent such as nitrilotriacetic acid in wastewater decreased the adsorbed amount of fluoride ion by forming a stable complex of $CaT^-$ and the adsorption reaction of fluoride ion on oyster shell was examined to be endothermic. The coexisting heavy metal ionic adsorbate in wastewater hindered the adsorption of fluoride ion, however, its adsorbed amount was increased as the particulate size of adsorbent was decreased. Finally, a serial adsorption column test has been conducted for a practical application of adsorption process and the breakthrough of the column adsorption was observed in 22 hours under the experimental condition.

Development of Highly Selective Fluorescent Chemosensors for Fluoride Ion (불소 이온 감지용 형광 센서의 개발)

  • Kim, Tae-Hyun;Kim, In-Ja;Yoo, Min-Ji;Swager, Timothy M.
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.3
    • /
    • pp.258-264
    • /
    • 2007
  • Novel fluoride sensory systems have been successfully developed. Previously developed method of the fluoride-induced lactonization to fluorescent molecules was detailed, and newly developed fluoride-induced aromatic cyclization scheme was introduced. Based on the strategies using the specific affinity of fluoride to silicon, our systems are highly selective for fluoride ion. Incorporation of the developed sensor to a conjugated polymer has successfully enhanced its sensitivity to fluoride ion.

Inhibition Effects of $Ca^{2+}$ and $F^-$ Ion on Struvite Crystallization ($Ca^{2+}$$F^-$ 이온이 Struvite 결정화 반응에 미치는 영향)

  • Kim, Seung-Ha;Kim, Keum-Yong;Ryu, Hong-Duck;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.7
    • /
    • pp.730-737
    • /
    • 2010
  • It is very important to remove fluoride ion before treating semiconductor wastewater containing high concentration of ammonia, phosphates, and fluoride ions by struvite formation. Calcium ion was generally added for the removal of fluoride ion. However, calcium ions remained after removal of fluoride ion can deteriorate the performance of struvite crystalization. It should be removed completely before struvite formation. In this study, the effect of fluoride and calcium ion concentration on the struvite crystalization was investigated. Removal efficiencies of ortho-phosphate with struvite formation were more abruptly decreased than those of ammonium nitrogen, as increase of fluoride ion concentration in synthetic wastewater. The structures of struvite formed in synthetic wastewater containing calcium ion of up to 500 mg/L were identical. Purity of struvite was deteriorated as increase of calcium ion over 500 mg/L. Removal efficiencies of ammonium nitrogen were more decreased than those of phosphate ions as increase of cacium ion in synthetic wastewater.

Quantum chemical investigations on bis(bora)calix[4]arene: a fluorescent fluoride sensor

  • Jin, Jae Hyeok;Lee, Yoon Sup
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.77-88
    • /
    • 2013
  • The computational study on the fluoride ion binding with bis(bora)calix[4]arene has been performed using density functional theory and ONIOM model. The computed structure and fluorescent behavior of bis(bora)calix[4]arene was corresponded to experiment value. The binding energy for fluoride anion is computed to be 28.05kJ/mol in the chloroform solution. We also predicted that this sensing mechanism is only valid for fluoride ion in halogens. By analyzing molecular orbitals, binding with fluoride ion reduces energy differences between HOMO and LUMO, which leads to fluorescent sensing.

  • PDF

Effects of Boronic Acid on the Fluoride-selective Chemosignaling Behavior of a Merocyanine Dye

  • Cha, Sun-Young;Jeon, Hye-Lim;Choi, Myung-Gil;Choe, Jong-In;Chang, Suk-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1309-1313
    • /
    • 2010
  • The effects of boronic acid on the fluoride-selective chemosignaling behavior of a merocyanine dye were investigated. In the presence of phenylboronic acid (PBA), N-methylquinolinium-based merocyanine dye displayed fluoride-selective chromogenic signaling behavior over other commonly coexisting anions in the micromolar concentration range. Signaling is produced by a fluoride-induced displacement of the dye from its complex with PBA, resulting in a significant chromogenic signal for the fluoride ion. This signaling was successfully analyzed using a ratiometric analysis of the UV-vis absorption in response to changes in fluoride ion concentration. A PBA substituted with an electron withdrawing group was found to exhibit a more pronounced signal. Polymer-bound PBA also exhibited useful fluoride-selective signaling behavior.

The Origin and Geochemical Behavior of Fluoride in Bedrock Groundwater: A Case Study in Samseung Area (Boeun, Chungbuk) (화강암 지역 암반 지하수 내 불소 이온의 기원 및 거동: 충북 보은 삼승면 일대의 현장 조사와 실내 실험 연구)

  • Chae, Gi-Tak;Koh, Dong-Chan;Choi, Byoung-Young
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.555-566
    • /
    • 2008
  • Hydrogeochemical study in Samseung area (Boeun, Chungbuk) and waterrock interaction experiment using rock samples from the area were performed to elucidate the fluoride source in groundwater and explaining geochemical behavior of fluoride ion. Fluoride concentration of public water supply mostly using groundwater in Boeun area was significantly higher in South Korea. The maximum fluoride concentration of the study area was 3.9 mg/L, and 23% of samples exceeded the Korean Drinking Water Standard of fluoride (1.5 mg/L). The average concentration of fluoride was 1.0 mg/L and median was 0.5 mg/L. Because of high skewness (1.3), median value is more appropriate to represent fluoride level of this area. The relationships between fluoride ion and geochemical parameters ($Na^+$, $HCO_3$, pH, etc.) indicated that the degree of waterrock interaction was not significant. However, high fluoride samples were observed in $NaHCO_3$ type on Piper's diagram. The negative relationship between fluoride and $NO_3$ ion which might originate from surface contaminants was obvious. These results indicate that fluoride ion in groundwater is geogenic origin. The source of fluoride was proved by waterrock interaction batch test. Fluoride concentration increased up to 1.2 mg/L after 96 hours of reaction between water and biotite granite. However, the relationship between well depth and fluoride ion, and groundwater age and fluoride ion was not clear. This indicates that fluoride ion is not correlated with degree of waterrock interaction in this area but local heterogeneity of fluoriderich minerals in granite terrain. High fluoride concentration in Boeun area seems to be correlated with distribution of permeable structures in hard rocks such as lineaments and faults of this area. This entails that the deep bedrock groundwater discharges through the permeable structures and mixed with shallow groundwater.

Synthesis of Chemosensor Based on Pyrene and Study for Its Sensing Properties Toward Fluoride Ion

  • Kim, Hyungjoo;Li, Xiaochuan;Son, Young-A
    • Textile Coloration and Finishing
    • /
    • v.25 no.3
    • /
    • pp.153-158
    • /
    • 2013
  • In this study, pyrene based chemosensor was synthesized by two step reaction. The chemosensor showed that high selectivity toward fluoride in DMSO. The fluorescence intensity was drastically increased by binding between chemosensor and fluoride ion. Absorption and fluorescence spectra were obtained by UV-Vis spectrometer and fluorescence spectrophotometer. The binding ratio between chemosensor and fluoride ion was also investigated by job's plot method and Benesi-Hildebrand plot. The HOMO/LUMO energy levels and electron distribution were calculated and simulated by Material studio 6.0 Package.

Application of multivariate statistics towards the geochemical evaluation of fluoride enrichment in groundwater at Shilabati river bank, West Bengal, India

  • Ghosh, Arghya;Mondal, Sandip
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.279-288
    • /
    • 2019
  • To obtain insightful knowledge of geochemical process controlling fluoride enrichment in groundwater of the villages near Shilabati river bank, West Bengal, India, multivariate statistical techniques were applied to a subgroup of the dataset generated from major ion analysis of groundwater samples. Water quality analysis of major ion chemistry revealed elevated levels of fluoride concentration in groundwater. Factor analysis (FA) of fifteen hydrochemical parameters demonstrated that fluoride occurrence was due to the weathering and dissolution of fluoride-bearing minerals in the aquifer. A strong positive loading (> 0.75) of fluoride with pH and bicarbonate for FA indicates an alkaline dominated environment responsible for leaching of fluoride from the source material. Mineralogical analysis of soli sediment exhibits the presence of fluoride-bearing minerals in underground geology. Hierarchical cluster analysis (HCA) was carried out to isolate the sampling sites according to groundwater quality. With HCA the sampling sites were isolated into three clusters. The occurrence of abundant fluoride in the higher elevated area of the observed three different clusters revealed that there was more contact opportunity of recharging water with the minerals present in the aquifer during infiltration through the vadose zone.

A Educational Study on Detection of Fluoride by Borane Compounds (보레인 화합물을 이용한 불소 이온 검출에 관한 교육 연구)

  • Lee, Kang Mun
    • Korean Educational Research Journal
    • /
    • v.37 no.1
    • /
    • pp.33-45
    • /
    • 2016
  • We propose a research for detection of the fluoride ion using borane compounds. Based on the Lewis acid-base reaction, we discussed the fundamental of sensing for fluoride ion. One of the important aspects in the chemistry of organoboranes is their behaviors as Lewis acids, which is a result of the vacant $2p_{\pi}$ orbital on the tricoordinate boron center. The electronic interaction between boron atoms and ${\pi}$-orbitals of donor molecules, constructed from the carbon 2p orbitals, is generally strong. Boron atoms can reach the desired octet configuration either through ${\pi}$-overlap with a suitable X or through formation of Lewis acid-Lewis base complexes.

  • PDF