• Title/Summary/Keyword: fluorescent protein

Search Result 507, Processing Time 0.033 seconds

Production of the yellow fluorescent silk using the fibroin heavy chain protein expression system in transgenic silkworm (피브로인 H-chain 재조합 단백질 발현시스템을 이용한 황색형광실크의 제작)

  • Kim, Seong Wan;Choi, Kwang-Ho;Kim, Seong Ryul;Yun, Eun Young;Park, Seung Won;Kang, Seok Woo;Goo, Tae Won
    • Journal of Sericultural and Entomological Science
    • /
    • v.52 no.2
    • /
    • pp.102-109
    • /
    • 2014
  • We constructed the fibroin H-chain expression system to produce enhanced yellow fluorescent proteins (EYFP) in the silk of transgenic silkworm. Fluorescent silk could be made by fusing EYFP cDNA to the heavy chain gene and injecting it into a silkworm. The EYFP fusion protein, each with N- and C-terminal sequences of the fibroin H-chain, was designed to be secreted into the lumen of the posterior silk glands. The expression of the EYFP/H-chain fusion gene was regulated by the fibroin H-chain promoter. The yellow fluorescence proving that the fusion protein was present in the silk. Accordingly, we suggest that the EYFP fluorescence silk will enable the production of novel biomaterial based on the transgenic silk.

Construction of fluorescent red silk using fibroin H-chain expression system (누에 형질전환에 의한 견사선에서의 적색형광단백질 발현)

  • Kim, Sung Wan;Yun, Eun Young;Choi, Kwang-Ho;Kim, Seong Ryul;Park, Seung Won;Kang, Seok Woo;Kwon, O-Yu;Goo, Tae Won
    • Journal of Sericultural and Entomological Science
    • /
    • v.50 no.2
    • /
    • pp.87-92
    • /
    • 2012
  • We constructed the fibroin H-chain expression system to produce Discosoma sp. red fluorescent protein variant2 (DsRed2) in transgenic silkworm cocoon. Fluorescent cocoon could be made by fusing DsRed2 cDNA to the heavy chain gene and injecting it into a silkworm. The DsRed2 fusion protein, each with N- and C-terminal sequences of the fibroin H-chain, was designed to be secreted into the lumen of the posterior silk glands. The expression of the DsRed2/H-chain fusion gene was regulated by the fibroin H-chain promoter. The use of the 3xP3-driven EGFP cDNA as a marker allowed us to rapidly distinguish transgenic silkworms. The EGFP fluorescence became visible in the ocelli and in the central and peripheral nervous system on the seventh day of embryonic development. A mixture of the donor and helper vector was micro-injected into 1,020 Kumokjam, bivoltin silkworm eggs. We obtained 6 broods. The cocoon was displayed strong red fluorescence, proving that the fusion protein was present in the cocoon. Accordingly, we suggest that the DsRed2 fluorescence silk will enable the production of novel biomaterial based on the transgenic silk.

Transfection and Expression of Reconstructed Genes within Baculoviral Vectors (Baculovirus 벡터내 재구성된 유전자의 전이와 발현)

  • Sa, Young-Hee;Choi, hang-Shik;Lee, Ki Hwan;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.588-591
    • /
    • 2018
  • Baculovirus was originally isolated from the alfalfa looper and contains a 134-kbp genome with 154 open reading frames (ORF). The major capsid protein VP39 together with some minor proteins forms the nucleocapsid ($21nm{\times}260nm$) that encloses the DNA with p6.9 protein. They are double-stranded, circular, supercoiled DNA molecules in a rod-shaped capsid. Wild-type baculoviruses exhibit both lytic and occluded life cycles that develop independently throughout the three phases of virus replication. Recombinant baculoviruses can transfer their vectors and express their recombinant proteins in a wide range of mammalian cell types. Especially, inclusion of a dominant selectable marker in these baculoviral vectors can express diverse recombinant genes in many cells. Baculoviral vectors were reconstructed with cytomegalovirus (CMV) promoter,uroplakin II promoter, polyhedron promoter, vesicular stomatitis virus G (VSVG), enhanced green fluorescent protein (EGFP), protein transduction domain (PTD) gene and so on. These reconstructed vectors were infected into various cell and cell lines. We performed transfection and expression of these recombinant vectors comparison with other control vectors. From this study, we knew that transfection and expression of these recombinant vectors have higher efficacy than any control vector. This work was supported by a grant from Mid-Career Researcher Program(NRF-2016R1A2B4016552) through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning(MSIP).

  • PDF

Subcellular Localization of Novel Stress Protein VISP (새로운 스트레스 단백질인 VISP의 세포내 위치)

  • Moon, Chang-Hoon;Yoon, Won-Joon;Ko, Myoung-Seok;Kim, Hyun-Ju;Park, Jeong-Woo
    • Korean Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.271-276
    • /
    • 2006
  • Previously we demonstrated that virus-inducible stress protein (VISP) is induced in fish cells by the infection of a fish rhabdovirus. In this paper, we investigated the subcellular localization of the VISP and determined the region of VISP responsible for the subcellular localization. The CHSE-214 cells were stained with monoclonal antibody raised against VISP and observed with confocal microscope to detect the endogenous VISP. The results showed that the VISP localizes to the perinuclear region as spots. A plasmid expressing VISP fused to enhanced green fluorescent protein (EGFP) was constructed. The transient expression of full-length VISP fused to EGFP in CHSE-214 cells confirmed the spot formation of the VISP at perinuclear region. To determine the region responsible for the perinuclear localization of the VISP, we constructed a series of deletion mutants and, by using these deletion mutants, we found that C-terminal region of the VISP (aa 612-710) is essential for the perinuclear distribution of VISP and that this region contained nuclear receptor binding motif (691-TLTSLLL-697). Our results suggest that VISP localizes to the perinuclear region and C-terminal regions are important for this localization. Further studies on the role of the perinuclear localization of VISP in IHNV growth mali reveal the novel mechanism of IHNV pathogenecity.

Identification of C4orf32 as a Novel Type I Endoplasmic Reticulum Resident Membrane Protein (Type I 소포체 목표화 막단백질에 속하는 새로운 C4orf32 막단백질의 동정)

  • Lee, Seung-Hwan;Park, Sang-Won;Lee, Jin-A;Jang, Deok-Jin
    • Journal of Life Science
    • /
    • v.29 no.9
    • /
    • pp.949-954
    • /
    • 2019
  • Membrane topology is a key characteristic of membrane proteins. We previously reported the cloning of the chromosome 4 open-reading frame 32 (C4orf32) gene as a potential membrane protein; however, the cellular localization and membrane topology of C4orf32 was as yet unknown. In this study, we found that green fluorescent protein (GFP) fused to the C-terminus of C4orf32 (C4orf32-GFP) was localized to the endoplasmic reticulum (ER). We applied three tools to identify determinants of C4orf32 topology: protease protection, fluorescence protease protection (FPP), and an inducible system using the ternary complex between FK506 binding protein 12 (FKBP), rapamycin, and the rapamycin-binding domain of mTOR (FRB) (the FRB-rapamycin-FKBP system). Using protease protection and FPP assays, we found that the GFP tag in C4orf32-GFP was localized to the cytoplasmic surface of the ER membrane of HeLa cells. Protease protection and FPP assays are useful and complimentary tools for identifying the topology of GFP fusion membrane proteins. The FRB-rapamycin-FKBP system was also used to study the topology of C4orf32. In the absence of rapamycin, a monomeric red fluorescent protein-FKBP fusion (mRFP-FKBP) and C4orf32-GFP-FRB were localized to the cytoplasm and the ER membrane, respectively. However, in the presence of rapamycin, the mRFP-FKBP was shifted from the cytoplasm to the ER and colocalized with the C4orf32-GFP-FRB. These results indicate that the FRB moiety is facing the cytoplasmic surface of ER membrane. Overall, our results clearly suggest that C4orf32 belongs to the family of type I ER resident membrane proteins.

여러 표적세포에서 Promoter의 종류와 WPRE의 유무에 따른 외래유전자의 발현효율성 비교

  • 김영혜;구본철;권모선;김태완
    • Proceedings of the KSAR Conference
    • /
    • 2004.06a
    • /
    • pp.239-239
    • /
    • 2004
  • 본 연구에서는 효과적인 유전자를 발현시킬 수 있는 retrovirus vector system을 구축하기 위하여 네 가지 promoter를 비교하였다. 일반적으로 사용되고 있는 RSV (Rous sarcoma virus), UbC (Ubiquitin), β-actin, CMV(cytomegalovirus) promoter 하에 GFP (green fluorescent protein)를 표지유전자로 사용하였다. 또한 WPRE (Woodchuck hepatitis virus Posttranscriptional Regulatory Element) 서열을 도입하여 각각의 promoter 하에서 GFP 유전자의 발현 증가 여부를 검정하였다. (중략)

  • PDF