• Title/Summary/Keyword: fluorescence quantum yield

Search Result 94, Processing Time 0.027 seconds

Suppression of tobamovirus movement toward upper leaves in the tomato plant over-expressing a maize calreticulin (옥수수 calreticulin 과발현 토마토에서 tobamovirus의 상엽 이동 억제)

  • Han, Jeung-Sul
    • Journal of Plant Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.567-573
    • /
    • 2010
  • To ascertain the effect of over-expressed maize calreticulin in tomato plant on tobamovirus movement in addition to validating potentiality of the gene (ZmCRT) as a means for the virus-resistance resource, four ZmCRT-expressing homozygous lines were generated from the T0 plants as using an Agrobacterium-mediated transformation, nucleic acid analyses, and a conventional breeding method. Of them, a line was subjected to the bioassay for tolerances to tobacco mosaic virus-U1 (TMV-U1) and tomato mosaic virus (ToMV) followed by RT-PCR and a chlorophyll fluorescence quenching analyses. Both transgenic plants transcribing ZmCRT and wild-type plants showed no symptom by 20 days after viruses inoculation, however the photosystem II quantum yield parameter measured from the upper leaves of ToMV-inoculated plants revealed that ZmCRT transgenic plants have higher photosynthetic ability than wild-type ones at that time, which indirectly implies that over-expressed ZmCRT product acts as a barrier to the cell-to-cell and/or systemic movement of ToMV. Moreover, ZmCRT transgenic plants showed remarkably longer shoot length than wild-type ones in 40 days after TMV-U1 or ToMV inoculation each, which might be resulted from higher photosynthetic ability during the phase not yet showing any external symptoms. Collectively, over-expressed ZmCRT protein in tomato plants is able to interrupt the systemic movement of infected TMV-U1 and ToMV even though not perfect.

Effect of temperature on photosynthetic capacity and influence of harvesting time on quality of Salvia miltiorrhiza Bunge (온도에 따른 단삼의 광합성 특성 및 수확시기가 품질에 미치는 영향)

  • Seo, Young-Jin;Kim, Jong-Su;Kim, Sun-Hwa;Kim, Mi-Yeon;Jeong, Yong-Jin;Seong, Gi-Un;Chung, Shin-Kyo
    • Food Science and Preservation
    • /
    • v.22 no.6
    • /
    • pp.804-810
    • /
    • 2015
  • Salvia miltiorrhiza has been used for treating heart and liver disease. In the present study, the influences of temperature on photosynthetical capacity of S. miltiorrhiza under controlled cultivation environment using growth chamber were investigated because of providing information about growth and secondary metabolite synthesis. And effect of harvesting time on growth properties and constituents such as salvianolic acid B, cryptotanshinone, tanshinone I, tanshinone IIA were evaluated. Maximum photosynthesis rate ($5.102{\mu}mol\;CO2/m2/s$) and net apparent quantum yield ($0.147{\mu}mol\;CO2/m2/s$), stomatal conductance (0.035 mmol/m2/s) and water use efficiency ($7.108{\mu}mol\;CO2/mmol\;H2O$) was highest at $20^{\circ}C$. Results of chlorophyll fluorescence showed that elevated temperature had contributed to reduce a quantum yield and electron flux in photosystem. This result demonstrated that favorable temperature condition was determined at $20^{\circ}C$. Contents of salvianolic acid B, cryptotanshinone, tanshinone I and tanshinone IIA was highest in root sample harvested at 20 March, whereas growth and yield of S. miltiorrhiza had no significant differences with harvesting time. Therefore, this study shows that temperature play an important role in photosynthetic activity and harvesting time have influence upon accumulation of constituents in root of S. miltiorrhiza.

Changes in the Chlorophyll of Garlic Chives (Allium tuberosum) Resulting fromFertilizer and Drought Stress (비료와 가뭄 스트레스에 의한 부추의 엽록소 변화)

  • Huh, Man Kyu;Lee, Byeongryong
    • Journal of Life Science
    • /
    • v.32 no.10
    • /
    • pp.743-748
    • /
    • 2022
  • The garlic chive (Allium tuberosum Rotter) is a prominent herb species in Asia and other nations of the world. Garlic chives is a favorite vegetable and used to garnish noodles in Korea. The effects of various doses of N, P, and K fertilizers and drought stress on the chlorophyll content in the leaves of garlic chives were investigated. The evaluations showed that chlorophyll a content was 0.386 at 10 mg/l N fertilizer and 0.584 at 50 mg/l N fertilizer. The treatment group showed a significant difference with regard to the contents of chlorophylls a and b and total chlorophyll at the 5% level (p<0.05). Pearson's correlation coefficient (Pearson's r) for chlorophylls a and b and total chlorophyll were 0.940, 0.966, and 0.971, respectively. The highest content of chlorophylls a and b and total chlorophyll in the leaves was recorded at 40 mg/l P fertilizer, while the values corresponding to 50 mg/l P fertilizer were lower than those for 40 mg/l P fertilizer. The content of total chlorophyll evaluated at 10 mg/l K fertilizer was 0.312 and that at 50 mg/l was 0.589. The simple linear regression showed the relationship between chlorophyll efficiency aand moisture. The slope factors of the dark-level fluorescence yield (Fo), the maximum fluorescence yield (Fm), the quenched state (Fv), and the maximal PSII quantum yield (Fv/Fm) for chlorophyll-efficient indicators were -0.931, 0.972, 972, and 0.950, respectively. NPK fertilizers and drought stress affected the chlorophyll content and efficiency of A. tuberosum.

Photodissociation of Methane at Lyman Alpha (121.6 nm)

  • Park, Jae-Hong;Lee, Jung-Woo;Sim, Ki-Jo;Han, Jin-Wook;Yi, Whi-Kun
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.177-180
    • /
    • 2008
  • Laser induced fluorescence studies of hydrogen atom using four wave mixing technique are reported for the photodissociation of CH4 and its isotopomers at Lya (121.6 nm). The source of dissociating and probe radiation is one and the same (delay time??20 nsec). The average translational energy of ejected hydrogen atoms (50 Kcal/mol) reveals that CH4 + hn??CH3 + H(2S) and CH4 + hn??CH2(a1A1) + H2(1Sg) are the main dissociation processes. The absolute quantum yield for CH4 and CD4 are the same, FH(CH4) = FD(CD4) = 0.31 0.05. If one divides the experimental H/D ratios from the isotopomers CH3D, CH2D2, CHD3 by the isotopic H/D ratios, a value 2 is obtained in all three cases. Overall, the heavier D atoms are more likely than the H atoms to remain attached to the carbon atom.

Formation of CH3NH3PbBr3 Perovskite Nanocubes without Surfactant and Their Optical Properties

  • Kirakosyan, Artavazd;Yun, Seokjin;Kim, Deul;Choi, Jihoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.1
    • /
    • pp.79-85
    • /
    • 2018
  • We systematically investigated the optical properties of sub-micron sized methylammonium lead tribromide ($CH_3NH_3PbBr_3$) cubes in the range of 100 to 700 nm, which were prepared by a surfactant-free precipitation method. We found that despite the strong absorbance, their photoluminescence quantum yield (PLQY) is very low as 0.009~0.011 % for whole range of sizes. Surfactant-free synthesis approach results in nanocubes that has no surface passivating reagents (e.g. surfactants) on their surface. As-prepared particles contain a large number of surface defects that may cause the low PLQY. The role of the surface defects were investigated in their photoluminescence decay process, which can be correlated with the particle size. Larger particles are characterized by a slower decay rate compared to smaller particles due to a large number of surface defects in the smaller particles that trap more excitons in the fluorescence decay process. These experimental results provide new insights into the fundamental relationship between surface state and optical properties.

Simple Fabrication of Green Emission and Water-Resistant CsPbBr3 Encapsulation Using Commercial Glass Frits (상업용 유리프릿의 소결 공정을 이용한 내수성을 갖는 CsPbBr3/Glass 세라믹 복합체의 제작)

  • Mun, Na-eun;Kim, Sunghoon
    • Korean Journal of Materials Research
    • /
    • v.31 no.1
    • /
    • pp.54-59
    • /
    • 2021
  • In this work, narrow-band green-emitting CsPbBr3 particles are embedded in commercialized glass composites by a facile dry process. By optimizing the method through sintering in glass frit (GF) composites including CsBr and PbBr2, used as precursors, the encapsulation of CsPbBr3 particles made them waterproof with green fluorescence. To improve the fluorescent properties by reducing aggregation of CsPbBr3, fumed silica (FS) is additionally used to help particles avoid bulking up in the glass matrix. The CsPbBr3 perovskite/glass composites are characterized using scanning electron microscopy (SEM) images and energy-dispersive X-ray spectroscopy (EDS) maps, which support the existence of CsPbBr3 particles in the glass matrix. The photoluminescence (PL) properties demonstrate that the emission spectrum peak, full width at half maximum (FWHM), and photoluminescence quantum yield (PLQY) values are 519 nm, 17 nm, and 17.7 %. We also confirm the water-resistant properties. To enhance water/moisture stability, the composite sample is put directly into water, with its PLQY monitored periodically under UV light.

Chlorophyll Fluorescence, Chlorophyll Content, Graft-taking, and Growth of Grafted Cucumber Seedlings Affected by Photosynthetic Photon Flux of LED Lamps (LED 램프의 광합성유효광양자속이 오이접목묘의 엽록소형광, 엽록소함량, 활착 및 생장에 미치는 영향)

  • Kim, Hyeong Gon;Lee, Jae Su;Kim, Yong Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.27 no.3
    • /
    • pp.231-238
    • /
    • 2018
  • Chlorophyll fluorescence, chlorophyll content, graft-taking and growth of grafted cucumber seedlings as affected by photosynthetic photon flux (PPF) of LED lamps were analyzed in this study. Four PPF levels, namely 25, 50, 100, $150{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ were provided to investigate the effect of light intensity on the chlorophyll fluorescence, chlorophyll content, graft-taking and growth of grafted cucumber seedlings. Air temperature, relative humidity, and photoperiod for graft-taking were maintained at $25^{\circ}C$, 90%, $16h{\cdot}d^{-1}$, respectively. Maximum quantum yield (Fv/Fm) of rootstock as affected by PPF was found to be 0.84-0.85 and there was no significant change in Fv/Fm. Even though Fv/Fm of scion measured at 2 days after grafting was lowered to 0.81-0.82, after then it gradually increased with increasing PPF. At 4 days after grafting, the chlorophyll content extracted from scion increased with increasing PPF. Graft-taking ratio of grafted cucumber seedlings was 90-95% as PPF was ranged from $25{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ to $100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. However, the graft-taking ratio of grafted seedlings healed under PPF of $150{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ was decreased to 80%. Maximum PPF measured required for smooth joining of rootstock and scion was assumed to be $100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. At healing stage of grafted cucumber seedlings, Fv/Fm of scion decreased and at least two days after grafting were required for rooting of grafted seedlings. Chlorophyll fluorescence response of rootstock and scion was linked to light irradiation. Therefore, it was concluded that physical environment including light and humidity during healing process of grafted seedlings should be controlled more precisely to facilitate root formation and to prevent scion from lowering Fv/Fm. Further studies are required to investigate the effects of root development and joining of vascular bundles of grafted seedlings on the chlorophyll content of scion.

Photosynthesis and Chlorophyll Fluorescence of Evergreen Hardwoods by Drying Stress (건조 스트레스가 난대 상록활엽수의 광합성 반응 및 엽록소 형광반응에 미치는 영향)

  • Jin, Eon-Ju;Yoon, Jun-Hyuk;Bae, Eun-Ji;Choi, Myung-Seok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.196-207
    • /
    • 2019
  • This study was carried out to investigate the effects of C. japonica, D. morbifera, D. macropodum, I. anisatum, Q. glauca and R. indica To investigate the photosynthetic ability, chlorophyll content, chlorophyll fluorescence analysis, and physiological environmental. The photosynthetic rate, cancer respiration rate, stomatal conductance, and rate of evaporation tended to decrease as a result of drying stress in the no-water condition for 28 days. I. anisatum, Q. glauca and R. indica showed a low rate of less than 40% until 28 days of no-treatment. The total chlorophyll contents were decreased in the order of D. macropodum> D. morbifera> C. japonica> Q. glauca> M. thunbergii> R. indica> I. anisatum. Chlorophyll fluorescence analysis showed that there was no change in the qP, but after 28 days no $Fv/F_m$, $F_o$, $R_{fd}$, $NPQ_{_-LSS}$ can be a useful indicator for quantitative estimation within a short period of time with a marked reduction rate of PSII quantum yield ${\Phi}PSII$ in the rectified state by continuous light during the nominal adaptation period. In the case of I. anisatum, Q. glauca and R. indica If water management can be carried out at intervals, it may be possible to plant trees in trees and landscape trees.

Influence of Temperature on the Photosynthetic Responses of Benthic Diatoms: Fluorescence Based Estimates (온도가 저서규조류 광합성 반응에 미치는 영향: 형광을 이용한 추정)

  • Yun, Mi-Sun;Lee, Choon-Hwan;Chung, Ik-Kyo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.2
    • /
    • pp.118-126
    • /
    • 2009
  • Benthic diatoms are very important primary producers in understanding estuary ecosystems and their productions are largely varied by their photo-physiological characteristics. The short-term effects of increased temperature on the photosynthetic and photo-physiological characteristics of cultured different species of benthic diatoms (Navicula sp., Nitzschia sp., Cylindrotheca closterium, and Pleurosigma elongatum) were investigated by measuring their PSII-fluorescence kinetics using a Diving-PAM. Photosynthesis versus irradiance curves were measured every two hours at six different temperatures (10, 15, 20, 25, 30, and $35^{\circ}C$) for twenty-four hour. The effective quantum yield of PSII ($\Phi_{PSII}$) for most of the species showed a decreasing trend with increased temperature. The relative maximum electron transport rate (rETRmax) was significantly increased up to the optimum temperature level and then sharply decreased. Relative to the values of other parameters, the maximum light use coefficient ($\alpha$) was not substantially changed at lower temperature levels (<$30^{\circ}C$) but significantly decreased only at higher temperatures (30 and $35^{\circ}C$). The light saturation coefficient ($E_K$) mirrored the rETRmax temperature response. In regards to the temperature acclimation abilities of the four species with time, Navicula sp. and C. closterium acclimated to short-term changes in temperature through their photo-physiological adjustments.

Physiological Responses of Cirsium setidens and Pleurospermum camtschaticum under Different Shading Treatments (피음처리에 따른 고려엉겅퀴와 누룩치의 생리반응)

  • Lee, Kyeong-Cheol;Noh, Hee-Sun;Kim, Jongh-Wan;Han, Sang-Sup
    • Journal of Bio-Environment Control
    • /
    • v.21 no.2
    • /
    • pp.153-161
    • /
    • 2012
  • This study was conducted to investigate the chlorophyll contents, photosynthetic characteristics and chlorophyll fluorescence of Cirsium setidens and Pleurospermum camtschaticum by shading treatment. Two species were grown under non-treated (full sunlight) and three different shading condition (88~93%, 65~75% and 45%~55% of full sunlight) for the experiment. Total chlorophyll content, photochemical efficiency (Fv/Fm), specific leaf area (SLA), and net apparent quantum yield were increased with elevating shading level but decreased dark respiration under the low light intensity. Therefore, light absorption and light utilization efficiency were improved under the low light intensity. 45~55% of full sunlight in C. setidens and 65~75% of full sunlight in P. camtschaticum showed best maximum photosynthetic rate, net apparent quantum yield and photochemical efficiency. On the other hand, non-treated showed lower maximum photosynthetic rate, photochemical efficiency, and chlorophyll content than treated ones. These results suggest that growth of P. camtschaticum adapted to 65~75% of full sunlight and C. setidens adapted to 45~55% of full sunlight.