• Title/Summary/Keyword: fluorescence imaging

Search Result 238, Processing Time 0.028 seconds

Recent Research Trend in Porous Silicon Nanoparticles for Biomedical Imaging (다공성 실리콘 나노 입자를 이용한 바이오이미징 연구동향)

  • Kim, Gi-Heon;Joo, Jinmyoung
    • Prospectives of Industrial Chemistry
    • /
    • v.22 no.6
    • /
    • pp.41-58
    • /
    • 2019
  • 다공성 실리콘 나노 입자는 약물 전달과 바이오이미징 등 의생명공학 분야에 다양하게 활용할 수 있는 가능성을 지닌 소재이다. 실리콘 원소 특유의 생분해성, 발광 효과, 다공성 구조 형성을 통한 약물 전달 기능에 이르는 다양한 특성으로 인해 미래 중개의학 플랫폼으로 각광 받고 있으며, 특히 바이오이미징 분야에서의 활용성이 매우 주목 받고 있다. 이에 대한 최신 연구 동향을 보고하고자, 다공성 실리콘 나노 입자의 제작 및 바이오이미징 응용 연구에 대한 성과를 소개한다. 바이오이미징을 위한 핵심 요소인 발광 특성(근적외선 방출, 마이크로 초 단위의 감쇄 시간 등)에 대한 논의를 바탕으로 최근 연구 성과 및 약물 전달 과정 모니터링 기능 등 다방면의 응용 가능성에 대한 방향을 소개한다. 실리콘 나노 입자의 제작 및 표면 화학 반응을 통한 기능성 제어, 이를 활용한 바이오이미징 연구 동향에 대한 전략도 광범위하게 제시하고자 한다.

Establishment of a Hepatocellular Carcinoma Cell Line Expressing Dual Reporter Genes: Sodium Iodide Symporter (NIS) and Enhanced Green Fluorescence Protein (EGFP) (나트륨 옥소 공동수송체 유전자와 녹색 형광 유전자의 이중 리포터 유전자를 발현하는 간암세포주 확립)

  • Kwak, Won-Jung;Koo, Bon-Chul;Kwon, Mo-Sun;Lee, Yong-Jin;Lee, Hwa-Young;Yoo, Jeong-Soo;Kim, Te-Oan;Chun, Kwon-Soo;Cheon, Gi-Jeong;Lee, Sang-Woo;Ahn, Byeong-Cheol;Lee, Jae-Tae
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.3
    • /
    • pp.226-233
    • /
    • 2007
  • Purpose: Dual reporter gene imaging has several advantages for more sophisticated molecular imaging studies such as gene therapy monitoring. Herein, we have constructed hepatoma cell line expressing dual reporter genes of sodium iodide symporter (NIS) and enhanced green fluorescence protein (EGFP), and the functionalities of the genes were evaluated in vivo by nuclear and optical imaging. Materials and Methods: A pRetro-PN vector was constructed after separating NIS gene from pcDNA-NIS. RSV-EGFP-WPRE fragment separated from pLNRGW was cloned into pRetro-PN vector. The final vector expressing dual reporter genes was named pRetro-PNRGW. A human hepatoma (HepG2) cells were transfected by the retrovirus containing NIS and EGFP gene (HepG2-NE). Expression of NIS gene was confirmed by RT-PCR, radioiodine uptake and efflux studies. Expression of EGFP was confirmed by RT-PCR and fluorescence microscope. The HepG2 and HepG2-NE cells were implanted in shoulder and hindlimb of nude mice, then fluorescence image, gamma camera image and I-124 microPET image were undertaken. Results: The HepG2-NE cell was successfully constructed. RT-PCR showed NIS and EGFP mRNA expression. About 50% of cells showed fluorescence. The iodine uptake of NIS-expressed cells was about 9 times higher than control. In efflux study, $T_{1/2}$ of HepG2-NE cells was 9 min. HepG2-NE xenograft showed high signal-to-background fluorescent spots and higher iodine-uptake compared to those of HepG2 xenograft. Conclusion: A hepatoma cell line expressing NIS and EGFP dual reporter genes was successfully constructed and could be used as a potential either by therapeutic gene or imaging reporter gene.

Super-Resolution Optical Fluctuation Imaging Using Speckle Illumination

  • Kim, Min-Kwan;Park, Chung-Hyun;Park, YongKeun;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.403.1-403.1
    • /
    • 2014
  • In conventional far-field microscopy, two objects separated closer than approximately half of an emission wavelength cannot be resolved, because of the fundamental limitation known as Abbe's diffraction limit. During the last decade, several super-resolution methods have been developed to overcome the diffraction limit in optical imaging. Among them, super-resolution optical fluctuation imaging (SOFI) developed by Dertinger et al [1], employs the statistical analysis of temporal fluorescence fluctuations induced by blinking phenomena in fluorophores. SOFI is a simple and versatile method for super-resolution imaging. However, due to the uncontrollable blinking of fluorophores, there are some limitations to using SOFI for several applications, including the limitations of available blinking fluorophores for SOFI, a requirement of using a high-speed camera, and a low signal-to-noise ratio. To solve these limitations, we present a new approach combining SOFI with speckle pattern illumination to create illumination-induced optical fluctuation instead of blinking fluctuation of fluorophore.. This technique effectively overcome the limitations of the conventional SOFI since illumination-induced optical fluctuation is possible to control unlike blinking phenomena of fluorophore. And we present the sub-diffraction resolution image using SOFI with speckle illumination.

  • PDF

Heavy Metal Ion Detection in Living Cell Using Fluorescent Chemosensor (형광화학센서를 이용한 살아있는 세포 내에서의 중금속이온검출)

  • Kwon, Pil-Seung;Kim, Jin-Kyung;Kim, Jong-Wan
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.4
    • /
    • pp.451-459
    • /
    • 2010
  • The fluorescence detection of intracellular metal ions are high interest in the fields of organic molecular chemistry and cellular biology. This study was purposed to detection for mercury and zinc in the cell using fluorescent chemosensor (FS). FS exhibits a weak fluorescence, but emits strong fluorescence upon Zn$^{2+}$ complexation. The increased fluorescence of the 2FS/Zn$^{2+}$ can be quenched completely by addition of only 1 equiv of Hg$^{2+}$ with the formation of complex FS-Hg$^{2+}$. Four cell lines (LLC-MK2, Hela, HT29 and AMC-HN3) were used for fluorescence imaging by confocal microscope. The cell viability MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was evaluated after cell treatment of FS, Zn$^{2+}$, FS-Zn$^{2+}$, Hg$^{2+}$ on LLC-MK2 cell line. The cytotoxicity of FS was showed to viability over 80%. This study has shown that FS can be detected for selective imaging of Zn$^{2+}$ and Hg$^{2+}$ in living cells.

In vivo Imaging Flow Cytometer (세포 이미징 기능을 겸비한 생체 유세포 분석기)

  • Lee, Ho
    • Journal of the Korean Society of Visualization
    • /
    • v.5 no.1
    • /
    • pp.9-11
    • /
    • 2007
  • We introduce an in vivo imaging flow cytometer, which provides fluorescence images simultaneously with quantitative information on the cell population of interest in a live animal. As fluorescent cells pass through the slit of light focused across a blood vessel, the excited fluorescence is confocally detected. This cell signal triggers a strobe beam and a high sensitivity CCD camera that captures a snap-shot image of the cell as it moves down-stream from the slit. We demonstrate that the majority of signal peaks detected in the in vivo flow cytometer arise from individual cells. The instrument's capability to image circulating T cells and measure their speed in the blood vessel in real time in vivo is demonstrated. The cell signal irradiance variation, clustering percentage, and potential applications in biology and medicine are discussed.

Multimodal Nonlinear Optical Microscopy for Simultaneous 3-D Label-Free and Immunofluorescence Imaging of Biological Samples

  • Park, Joo Hyun;Lee, Eun-Soo;Lee, Jae Yong;Lee, Eun Seong;Lee, Tae Geol;Kim, Se-Hwa;Lee, Sang-Won
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.551-557
    • /
    • 2014
  • In this study, we demonstrated multimodal nonlinear optical (NLO) microscopy integrated simultaneously with two-photon excitation fluorescence (TPEF), second-harmonic generation (SHG), and coherent anti-Stokes Raman scattering (CARS) in order to obtain targeted cellular and label-free images in an immunofluorescence assay of the atherosclerotic aorta from apolipoprotein E-deficient mice. The multimodal NLO microscope used two laser systems: picosecond (ps) and femtosecond (fs) pulsed lasers. A pair of ps-pulsed lights served for CARS (817 nm and 1064 nm) and SHG (817 nm) images; light from the fs-pulsed laser with the center wavelength of 720 nm was incident into the sample to obtain autofluorescence and targeted molecular TPEF images for high efficiency of fluorescence intensity without cross-talk. For multicolor-targeted TPEF imaging, we stained smooth-muscle cells and macrophages with fluorescent dyes (Alexa Fluor 350 and Alexa Fluor 594) for an immunofluorescence assay. Each depth-sectioned image consisted of $512{\times}512$ pixels with a field of view of $250{\times}250{\mu}m^2$, a lateral resolution of $0.4{\mu}m$, and an axial resolution of $1.3{\mu}m$. We obtained composite multicolor images with conventional label-free NLO images and targeted TPEF images in atherosclerotic-plaque samples. Multicolor 3-D imaging of atherosclerotic-plaque structural and functional composition will be helpful for understanding the pathogenesis of cardiovascular disease.

Real-time FRET imaging of cytosolic FAK signal on microwavy patterned-extracellular matrix (ECM) (미세파상 패턴 ECM 에서 세포질 FAK 신호의 실시간 FRET 이미징)

  • Suh, Jung-Soo;Jang, Yoon-Kwan;Kim, Tae-Jin
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • Human mesenchymal stem cells (hMSC) are multipotent stromal cells that have great potential to differentiate into a variety of cell types such as osteocytes, chondrocytes, and myocytes. Although there have been many studies on their clinical availability, little is known about how intracellular signals can be modulated by topographic features of the extracellular matrix (ECM). In this study, we investigated whether and how microwavy-patterned extracellular matrix (ECM) could affect the signaling activity of focal adhesion kinase (FAK), a key cellular adhesion protein. The fluorescence resonance energy transfer (FRET)-based FAK biosensor-transfected cells are incubated on microwavy-patterned surfaces and then platelet derived growth factor (PDGF) are treated to trigger FAK signals, followed by monitoring through live-cell FRET imaging in real time. As a result, we report that PDGF-induced FAK was highly activated in cells cultured on microwavy-patterned surface with L or M type, while inhibited by H type-patterned surface. In further studies, PDGF-induced FAK signals are regulated by functional support of actin filaments, microtubules, myosin-related proteins, suggesting that PDGF-induced FAK signals in hMSC upon microwavy surfaces are dependent on cytoskeleton (CSK)-actomyosin networks. Thus, our findings not only provide new insight on molecular mechanisms on how FAK signals can be regulated by distinct topographical cues of the ECM, but also may offer advantages in potential applications for regenerative medicine and tissue engineering.

A Study on PWM Control of Near-Infrared Fluorescence Imaging System (근적외선 형광 영상시스템의 PWM 제어에 관한 연구)

  • Lee, Byeong-Ho;Pan, Sung Bum
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.11
    • /
    • pp.115-121
    • /
    • 2018
  • Fluorescent images using near-infrared light have no worry about radioactivity, and images can be checked in real time during surgery. Therefore experiments using fluorescent images for monitoring lymph node biopsy are actively under way. Fluorescent imaging equipment uses high heat-generating components such as LED and camera, thus uses water-cooling system as a stable heating suppression means. However in the fluorescent image equipment, the water cooling system takes a large volume which is a disadvantage in terms of miniaturization of the equipment. Even if the air cooling system is used for miniaturizing the equipment, heat generation is a problem. In this paper, we have experimented with the air cooling method using PWM control for the miniaturization of the equipment, and confirmed the constant quality of the fluorescent image and the suppression of the heat generation without any problems even when the equipment is used for a long time.

Monte Carlo simulation of spatial resolution of lens-coupled LYSO scintillator for intense pulsed gamma-ray imaging system with large field of view

  • Guoguang Li;Liang Sheng;Baojun Duan;Yang Li;Dongwei Hei;Qingzi Xing
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2650-2658
    • /
    • 2024
  • In this paper, we use a Monte Carlo (MC) simulation based on Geant4 to investigate the influence of four parameters on the spatial resolution of the lens-coupled lutetium yttrium orthosilicate (LYSO) scintillator, including the thickness of the LYSO scintillator, the F-number and minification factor of the lens, and the incident position of the gamma-rays. Simulation results show that when the gamma-rays are incident along the lens axis, the smaller the thickness, the larger the F-number, the larger the minification factor, the higher the spatial resolution, with an isotropic point spread function (PSF). As the incident position of the gamma-rays deviates from the lens axis, the spatial resolution decreases, and the PSF becomes anisotropic. In addition, by analyzing the whole physical process of the lens-coupled LYSO scintillator from gamma-rays to secondary electrons to fluorescence photons, we aim to provide a detailed analysis of the influence of each parameter on the spatial resolution. The results show that the PSF of the secondary electrons energy deposition is almost constant in the simulation, which determines the upper limit of the spatial resolution. Meanwhile, the dispersion process of the fluorescence photons can explain the reason why each parameter affects the spatial resolution.

Visual Analysis for Detection and Quantification of Pseudomonas cichorii Disease Severity in Tomato Plants

  • Rajendran, Dhinesh Kumar;Park, Eunsoo;Nagendran, Rajalingam;Hung, Nguyen Bao;Cho, Byoung-Kwan;Kim, Kyung-Hwan;Lee, Yong Hoon
    • The Plant Pathology Journal
    • /
    • v.32 no.4
    • /
    • pp.300-310
    • /
    • 2016
  • Pathogen infection in plants induces complex responses ranging from gene expression to metabolic processes in infected plants. In spite of many studies on biotic stress-related changes in host plants, little is known about the metabolic and phenotypic responses of the host plants to Pseudomonas cichorii infection based on image-based analysis. To investigate alterations in tomato plants according to disease severity, we inoculated plants with different cell densities of P. cichorii using dipping and syringe infiltration methods. High-dose inocula (${\geq}10^6cfu/ml$) induced evident necrotic lesions within one day that corresponded to bacterial growth in the infected tissues. Among the chlorophyll fluorescence parameters analyzed, changes in quantum yield of PSII (${\Phi}PSII$) and non-photochemical quenching (NPQ) preceded the appearance of visible symptoms, but maximum quantum efficiency of PSII ($F_v/F_m$) was altered well after symptom development. Visible/near infrared and chlorophyll fluorescence hyperspectral images detected changes before symptom appearance at low-density inoculation. The results of this study indicate that the P. cichorii infection severity can be detected by chlorophyll fluorescence assay and hyperspectral images prior to the onset of visible symptoms, indicating the feasibility of early detection of diseases. However, to detect disease development by hyperspectral imaging, more detailed protocols and analyses are necessary. Taken together, change in chlorophyll fluorescence is a good parameter for early detection of P. cichorii infection in tomato plants. In addition, image-based visualization of infection severity before visual damage appearance will contribute to effective management of plant diseases.