• Title/Summary/Keyword: fluorescence detector

Search Result 185, Processing Time 0.024 seconds

Bioequivalence Test of Fexofenadine Hydrochloride 120 mg Tablets (염산펙소페나딘 120밀리그람 정제의 생물학적동등성시험)

  • Cho, Hea-Young;Kang, Hyun-Ah;Kim, Se-Mi;Lee, Yong-Bok
    • YAKHAK HOEJI
    • /
    • v.52 no.3
    • /
    • pp.188-194
    • /
    • 2008
  • Fexofenadine, ($\pm$)-4-1-hydroxy-4-{4-(hydroxydiphenylmethyl)-1-piperidinyl}-butyl-a,a-dimethyl benzeneacetic acid, is a selective histamine $H_1$ receptor antagonist, and is clinically effective in the treatment of seasonal allergic rhinitis and chronic idiopathic urticaria as a first-line therapeutic agent. The purpose of the present study was to evaluate the bioequivalence of two fexofenadine hydrochloride tablets, $Allegra^{(R)}$ (Handok Pharmaceuticals Co., Ltd.) and Alecort (Samchundang Pharmaceutical Co., Ltd.), according to the guidelines of the Korea Food and Drug Administration (KFDA). The release of fexofenadine from the two fexofenadine hydrochloride formulations in vitro was tested using KP VIII Apparatus II method with various dissolution media. Twenty six healthy male subjects, 25.62$\pm$3.35 years in age and 70.05$\pm$11.71 kg in body weight, were divided into two groups and a randomized 2$\times$2 cross-over study was employed. After a single tablet containing 120 mg as fexofenadine hydrochloride was orally administered, blood samples were taken at predetermined time intervals and the concentrations of fexofenadine in serum were determined using HPLC with fluorescence detector. The dissolution profiles of two formulations were similar in all tested dissolution media. The harmacokinetic parameters such as $AUC_t$, $C_{max}$ and $T_{max}$ were calculated, and ANOVA test was utilized for the statistical analysis of the parameters using logarithmically transformed $AUC_t$, $C_{max}$ and untransformed $T_{max}$. The results showed that the differences between two formulations based on the reference drug, $Allegra^{(R)}$, were -1.37, 5.22 and 16.50% for $AUC_t$, $C_{max}$ and $T_{max}$, respectively. There were no sequence effects between two formulations in these parameters. The 90% confidence intervals using logarithmically transformed data were within the acceptance range of log 0.8 to log 1.25 (e.g., log 0.83$\sim$log 1.08 and log 0.81$\sim$log 1.03 for $AUC_t$ and $C_{max}$, respectively). Thus, the criteria of the KFDA bioequivalence guideline were satisfied, indicating Alecort tablet was bioequivalent to $Allegra^{(R)}$ tablet.

Bioequivalence and Pharmacokinetics of 70 mg Alendronate Sodium Tablets by Measuring Alendronate in Plasma

  • Yun Min-Hyuk;Woo Jong-Su;Kwon Kwang-Il
    • Archives of Pharmacal Research
    • /
    • v.29 no.4
    • /
    • pp.328-332
    • /
    • 2006
  • The bioequivalence and pharmacokinetics of alendronate sodium tablets were examined by determining the plasma concentration of alendronate. Two groups, consisting of 24 healthy volunteers, each received a 70 mg reference alendronate sodium tablet and a test tablet in a $2{\times}2$ crossover study. There was a 6-day washout period between doses. The plasma alendronate concentration was monitored for 7 h after the dose, using HPLC-Fluorescence Detector (FD). The area under the plasma concentration-time curve from time 0 to the last sampling time at 7 h $(AUC_{0-7h})$ was calculated using the linear-log trapezoidal rule. The maximum plasma drug concentration $(C_{max})$ and the time to reach $C_{max}(T_{max})$ were derived from the plasma concentration-time data. Analysis of variance was performed using logarithmically transformed $AUC_{0-7h}\;and\;C_{max}$, and untransformed $T_{max}$. For the test medication versus the reference medication, the $AUC_{0-7h}\;were\;87.63{\pm}29.27\;vs.\;102.44{\pm}69.96ng\;h\;mL^{-1}$ and the $C_{max}$ values were $34.29{\pm}13.77\;vs.\;38.47{\pm}24.39ng\;mL^{-1}$ respectively. The $90\%$ confidence intervals of the mean differences of the logarithmic transformed $AUC_{0-7h}$ and $C_{max}$ values were log 0.8234-log 1.1597 and log 0.8222-log 1.1409, respectively, satisfying the bioequivalence criteria guidelines of both the US Food and Drug Administration and the Korea Food and Drug Administration. The other pharmacokinetic parameters for the test drug versus reference drug, respectively, were: $t_{1/2},\;1.87{\pm}0.62\;vs.\;1.77{\pm}0.54\;h;\;V/F,\;2061.30{\pm}986.49\;vs.\;2576.45{\pm}1826.05\;L;\;CL/F,\;835.32{\pm}357.35\;vs.\;889.48{\pm}485.87\;L\;h^{-1}; K_{el},\;0.42{\pm}0.14\;vs.\;0.40{\pm}0.18\;h^{-1};\;Ka,\;4.46{\pm}3.63\;vs.\;3.80{\pm}3.64\;h^{-1};\;and\;T_{lag},\;0.19{\pm}0.09\;vs.\;0.18{\pm}0.06\;h$. These results indicated that two alendronate formulations(70-mg alendronate sodium) were biologically equivalent and can be prescribed interchangeably.

Determining of polycyclic aromatic hydrocarbons in domestic vegetables and fruits (국내유통 채소류 및 과일류 중 다환방향족탄화수소 분석)

  • Hu, Soojung;Oh, Nam Su;Kim, Soo Yeon;Lee, Hyomin
    • Analytical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.415-421
    • /
    • 2006
  • The following concentrations of some PAHs were investigated; [benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, dibenzo(a,h)anthracene, benzo(g,h,i)perylene, indeno (1,2,3-c,d)pyrene] in vegetables(n=160) and fruits(n=50). The food samples were purchased at the local markets in Seoul, Chuncheon, Daejeon, Kwangju and Pusan. The samples were radish, onion, bean sprouts, welsh onion, chinese cabbage, spinach, young pumpkin, garlic, cucumber, carrot, lettuce, sesame leaf, tangerine, persimmon, apple, pear and banana. The methodology involved ultrasonic extraction with dichloromethane, clean-up on Sep-Pak florisil cartridges and determination by HPLC/FLD (High Performance Liquid Chromatography/Fluorescence Detector). Overall method recoveries for 8 PAHs spiked into these products ranged from 95 to 102%. The mean level of the following PAHs were determined; benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, dibenzo(a,h)anthracene, benzo(g,h,i)perylene and indeno(1,2,3-c,d)pyrene in vegetables and fruits was N.D., 0.014 ng/g, 0.031 ng/g, 0.016 ng/g, 0.019 ng/g, 0.091 ng/g, 0.016 ng/g and N.D., respectively.

Analysis of polycyclic aromatic hydrocarbons in cooked fish and shellfish (조리어패류 중 다환방향족탄화수소 분석)

  • Hu, Soojung;Park, Sungkuk;Jin, Sunhee;Choi, Dongmi
    • Analytical Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.109-117
    • /
    • 2009
  • The following concentrations of some PAHs were investigated; [benzo(a)anthracene, chrysene, benzo (b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, dibenzo(a,h)anthracene, benzo(g, h, i)perylene, indeno (1,2,3-c,d)pyrene] in fish(n=168) and shellfish(n=40). The methodology involved saponification and extraction with n-hexane, clean-up on Sep-Pak Florisil Cartridges and determination by HPLC/FLD (High Performance Liquid Chromatograph/Fluorescence Detector). Overall method recoveries for 8 PAHs spiked into these products ranged from 88 to 112%. The mean level of benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k) fluoranthene, benzo(a)pyrene, dibenzo(a,h)anthracene, benzo(g,h,i)perylene and indeno(1,2,3-c,d)pyrene in cooked fish was ND, ND, 0.0009, ND, 0.01, ND, ND, ND and in cooked shellfish was 1.84, 3.51, 0.81, 0.38, 0.39, 0.04, 0.20, ND, respectively.

A study of analytical method for Benzo[a]pyrene in edible oils (식용유지 중 벤조피렌 분석법 비교 연구)

  • Min-Jeong Kim;jun-Young Park;Min-Ju Kim;Eun-Young Jo;Mi-Young Park;Nan-Sook Han;Sook-Nam Hwang
    • Analytical Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.291-299
    • /
    • 2023
  • The benzo[a]pyrene in edible oils is extracted using methods such as Liquid-liquid, soxhlet and ultrasound-assisted extraction. However these extraction methods have significant drawbacks, such as long extraction time and large amount of solvent usage. To overcome these drawbacks, this study attempted to improve the current complex benzo[a]pyrene analysis method by applying the QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method that can be analyzed in a simple and short time. The QuEChERS method applied in this study includes extraction of benzo[a]pyrene into n-hexane saturated acetonitrile and n-hexane. After extraction and distribution using magnesium sulfate and sodium chloride, benzo[a]pyrene is analyzed by liquid chromatography with fluorescence detector (LC/FLR). As a result of method validation of the new method, the limit of detection (LOD) and quantification (LOQ) were 0.02 ㎍/kg and 0.05 ㎍/kg, respectively. The calibration curves were constructed using five levels (0.1~10 ㎍/kg) and coefficient (R2) was above 0.99. Mean recovery ratio was ranged from 74.5 to 79.3 % with a relative standard deviation (RSD) between 0.52 to 1.58 %. The accuracy and precision were 72.6~79.4 % and 0.14~7.20 %, respectively. All results satisfied the criteria ranges requested in the Food Safety Evaluation Department guidelines (2016) and AOAC official method of analysis (2023). Therefore, the analysis method presented in this study was a relatively simple pretreatment method compared to the existing analysis method, which reduced the analysis time and solvent use to 92 % and 96 %, respectively.

Optimization of Analytical Methods for Ochratoxin A and Zearalenone by UHPLC in Rice Straw Silage and Winter Forage Crops (UHPLC를 이용한 볏짚 사일리지와 동계사료작물의 오크라톡신과 제랄레논 분석법 최적화)

  • Ham, Hyeonheui;Mun, Hye Yeon;Lee, Kyung Ah;Lee, Soohyung;Hong, Sung Kee;Lee, Theresa;Ryu, Jae-Gee
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.4
    • /
    • pp.333-339
    • /
    • 2016
  • The objective of this study was to optimize analytical methods for ochratoxin A (OTA) and zearalenone (ZEA) in rice straw silage and winter forage crops using ultra-high performance liquid chromatography (UHPLC). Samples free of mycotoxins were spiked with $50{\mu}g/kg$, $250{\mu}g/kg$, or $500{\mu}g/kg$ of OTA and $300{\mu}g/kg$, $1500{\mu}g/kg$, or $3000{\mu}g/kg$ of ZEA. OTA and ZEA were extracted by acetonitrile and cleaned-up using an immunoaffinity column. They were then subjected to analysis with UHPLC equipped with a fluorescence detector. The correlation coefficients of calibration curves showed high linearity ($R^2{\geq_-}0.9999$ for OTA and $R^2{\geq_-}0.9995$ for ZEA). The limit of detection and quantification were $0.1{\mu}g/kg$ and $0.3{\mu}g/kg$, respectively, for OTA and $5{\mu}g/kg$ and $16.7{\mu}g/kg$, respectively, for ZEA. The recovery and relative standard deviation (RSD) of OTA were as follows: rice straw = 84.23~95.33%, 2.59~4.77%; Italian ryegrass = 79.02~95%, 0.86~5.83%; barley = 74.93~97%, 0.85~9.19%; rye = 77.99~96.67%, 0.33~6.26%. The recovery and RSD of ZEA were: rice straw = 109.6~114.22%, 0.67~7.15%; Italian ryegrass = 98.01~109.44%, 1.65~4.81%; barley = 98~113.53%, 0.25~5.85%; rye = 90.44~108.56%, 2.5~4.66%. They both satisfied the standards of European Commission criteria (EC 401-2006) for quantitative analysis. These results showed that the optimized methods could be used for mycotoxin analysis of forages.

Mechanisms of Tributyltin-induced Leydig Cell Apoptosis (유기주석화합물이 웅성생식세포주에 미치는 영향)

  • Lee, Kyung-Jin;Kim, Deok-Song;Ra, Myung-Suk;Wui, Seong-Uk;Im, Wook-Bin;Park, Hueng-Sik;Lee, Jong-Bin
    • Environmental Analysis Health and Toxicology
    • /
    • v.18 no.2
    • /
    • pp.89-94
    • /
    • 2003
  • Tributyltin (TBT) used world-wide in antifouling paints for ships is a widespread environmental pollutant and cause reproductive organs atrophy in rodents. At low doses, antiproliferative modes of action have been shown to be involved, whereas at higher doses apoptosis seems to be the mechanism of toxicity in reproductive organs by TBT. In this study, we investigated that the mechanisms underlying DNA fragmentation induced by TBT in the rat leyding cell line, R2C. Effects of TBT on intracellular Ca$\^$2+/ level and reactive oxygen species (ROS) were investigated in R2C cells by fluorescence detector. TBT significantly induced intracellular Ca$\^$2+/ level in a time-dependent manner. The rise in intracellular Ca$\^$2+/ level was followed by a time-dependent generation of reactive oxygen species (ROS) at the cytosol level. Simultaneously, TBT induced the release of cytochrome c from the mitochondrial membrane into the cytosol. Furthermore, ROS production and the release of cytochrome c were reduced by BAPTA, an intracellular Ca$\^$2+/ chelator, indicating the important role of Ca$\^$2+/ in R2C during these early intracellular events. In addition, Z-DEVD FMK, a caspase-3 inhibitor, decreased apoptosis by TBT. Taken together, the present results indicated that the apoptotic pathway by TBT might start with an increase in intracellular Ca$\^$2+/ level, continues with release of ROS and cytochrome c from mitochondria, activation of caspases,and finally results in DNA fragmentation.

Determination of β-Carotene and Retinol in Korean Noodles and Bread Products (가공 및 외식식품 중 면류 및 제빵류의 레티놀 및 베타카로틴 함량 조사)

  • Shin, Jung-Ah;Chun, Ji Yeon;Lee, Junsoo;Shin, Ki Yong;Lee, Soon Kyu;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.12
    • /
    • pp.1949-1957
    • /
    • 2013
  • The contents of ${\beta}$-carotene and retinol in processed and restaurant foods, such as Korean noodles, mandus, rice cakes and bread products, were quantified by high-performance liquid chromatography (HPLC) with UV/visible and fluorescence detector, respectively. Samples were collected from different local areas (i.e. Gangwon-do, Gyeonggi-do, Gyeongsang-do, Seoul, Jeolla-do, and Chungcheong-do). After homogenization, samples were hydrolyzed by direct alkali saponification; thereafter, fat-soluble components were extracted by a mixture of n-hexane/ethylacetate (85:15, v/v), containing 0.01% butylated hydroxytoluene (BHT). ${\beta}$-carotene and retinol contents in infant formula used as an in-house material for the analytical quality control. Among 14 Korean noodles, high contents of ${\beta}$-carotene were found in Bibim-Guksu (average 442.43 ${\mu}g/100g$) and Jjolmyeon (average 301.39 ${\mu}g/100g$). In 4 Korean mandus, the highest contents of ${\beta}$-carotene was determined in Kimchi-mandu (average 197.64 ${\mu}g/100g$), resulting in 33.3 RE of the converted vitamin A. Among 12 Korean rice cakes, Maeun-Tteokbokki and Modm-Chaltteok contained relatively high content of ${\beta}$-carotene with 205.11 and 41.33 ${\mu}g/100g$, respectively, while retinol was detected only in Maeun- Tteokbokki (1.65~10.45 ${\mu}g/100g$). In addition, among 8 bread products, 77.3 RE of pastry, 51.2 RE of buttercream- bread, and 41.4 RE of morning roll were found as the contents of the converted vitamin A.

Analysis of PAHs (polycyclic aromatic hydrocarbons) in Ground Coffee Using GC-tandem Mass Spectrometry and Estimation of Daily Dose (GC-tandem mass spectrometry를 이용한 분쇄원두커피 중 PAHs(polycyclic aromatic hydrocarbons) 분석법 연구 및 인체노출량 평가)

  • Jung, So-Young;Park, Ju-Sung;Son, Yeo-Joon;Choi, Su-Jeong;Lee, Yun-Jeong;Kim, Mi-Sun;Park, So-Hyun;Lee, Sang-Me;Chae, Young-Zoo
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.544-552
    • /
    • 2011
  • The purpose of this study was to develop an analytical method for determining 15 polycyclic aromatic hydrocarbons (PAHs) of EU priority using gas chromatography (GC)-tandem mass spectrometry (MS). The PAHs in ground coffee were analyzed after being extracted using methods such as saponification-liquid-liquid extraction, Soxhlet extraction, and solid-liquid extraction. The solid-liquid extraction method showed the greatest repeatability and most efficient reduction of the matrix effect. GC-tandem MS for the quantification of the 15 PAHs showed better resolution and lower limit of detections (LODs) than GC-MS-selected ion monitoring (SIM) and high performance liquid chromatography with fluorescence detector. LODs of this method for the ground coffee types were 0.002-0.1 ${\mu}g/kg$ and limit of quantifications (LOQs) were 0.006-0.2 ${\mu}g/kg$ The recoveries ranged from 52.6 to 93.3%. Forty-six commercial types of ground coffee were analyzed to determine their PAHs contamination levels. PAHs concentration ranged from ND to 5.988 ${\mu}g/kg$. This study was conducted with toxicity equivalence factors, the U.S. EPA recommendation to identify dietary risks for PAHs in different types of coffee. The estimated average daily dose of PAHs was $5.24{\times}10^{-8}$ mg/kg body weight/day.

Relationships between Fatty Acids and Tocopherols of Conventional and Genetically Modified Peanut Cultivars Grown in the United States (미국산 전통품종과 유전자 재조합 땅콩품종의 지방산과 토코페롤의 상관관계)

  • Shin, Eui-Cheol
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.10
    • /
    • pp.1618-1628
    • /
    • 2013
  • Relationships between fatty acids and tocopherols in conventional and genetically modified peanut cultivars were studied by gas chromatography with flame ion detector and high performance liquid chromatography with fluorescence detection. Eight fatty acids and four tocopherol isomers in the sample set were identified and quantified. Oleic acid and linoleic acid are major fatty acids and the ratio of oleic and linoleic acids ranged from 1.11 to 16.26. Tocopherols contents were 6.76 to 12.24 for ${\alpha}$-tocopherol (T), 0.08 to 0.39 for ${\beta}$-T, 5.28 to 15.02 for ${\gamma}$-T, and 0.17 to 1.17 mg/100 g for ${\delta}$-T. Correlation coefficient (r) for fatty acids and tocopherols indicated a strong inverse relationship between oleic & linoleic acids (r=-0.97, P<0.05) and positive relationships between palmitic & linoleic acids (r=0.95, P<0.05) and ${\gamma}$-T & ${\delta}$-T (r=0.83, P<0.05). Principal component analysis (PCA) of fatty acids and tocopherols gave four significant principal components (PCs, with eigenvalues>1), which together account for 85.49% of the total variance in the data set with PC1 and PC2 contributing 45.27% and 21.33% of the total variability, respectively. Eigen analysis of the correlation matrix loadings of the four significant PCs revealed that PC1 was mainly contributed by palmitic, oleic, linoleic, and gondoic acids, while PC2 was by behenic acid, ${\beta}$-T, and ${\gamma}$-T. The score plot generated by PC1-PC2 identified sample clusters in the two spatial planes based on the oleic and linoleic acids. The score plot PC3-PC4 didn't separate sample groups.