• Title/Summary/Keyword: fluorescence amplification method

Search Result 21, Processing Time 0.031 seconds

Fluorescence Immunoassy of HDL and LDL Using Protein A LB Film

  • Choi, Jeong-Woo;Park, Jun-Hyo;Lee, Woo-Chang;Oh, Byung-Keun;Min, Jun-Hong;Lee, Won-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.979-985
    • /
    • 2001
  • A fluorometric detection technique for HDL (High Density Lipoprotein) and LDL (Low Density Lipoprotein) was developed for application in a fiber-optic immunosensor using a protein A Langmuir-Blodgget (LB) film. For the fluorescence immunoassay, antibodies specific to HDL or LDL were imobilied on the protein A LB film, and a fluorescence amplification method was developed to overcome their weak fluorescence. The deposition of protein A using the LB technique was monitored using a surface pressure-are $({\pi}-A)$ curve, and the antibody immobilization of the protein A LB film was experimentally verified. The immobilized antibody was used to separate only HDL and LDL from a sample, then the fluorescence of he separated HDL or LDL was amplified. The amount of LDL or HDL was measured using the developed fiber optic fluorescence detection system. The optical properties resulting from the reaction of HDL or LDL with o-phtaldialdehyde, detection range, response time, and stability of the immunoassay were all investigated. The respective detection ranges for HDL and LDL were sufficient to diagnose the risk of coronary heart disease. The amplification step increased the sensitivity, while selective separation using the immobilized antibody led to linearity in the sensor signal. The regeneration of the antibody-immobilized substrate could produce a stable and reproducible immunosensor.

  • PDF

Fluorometric Detection of Low-Abundance EGFR Exon 19 Deletion Mutation Using Tandem Gene Amplification

  • Kim, Dong-Min;Zhang, Shichen;Kim, Minhee;Kim, Dong-Eun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.5
    • /
    • pp.662-667
    • /
    • 2020
  • Epidermal growth factor receptor (EGFR) mutations are not only genetic markers for diagnosis but also biomarkers of clinical-response against tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer (NSCLC). Among the EGFR mutations, the in-frame deletion mutation in EGFR exon 19 kinase domain (EGFR exon 19-del) is the most frequent mutation, accounting for about 45% of EGFR mutations in NSCLCs. Development of sensitive method for detecting the EGFR mutation is highly required to make a better screening for drug-response in the treatment of NSCLC patients. Here, we developed a fluorometric tandem gene amplification assay for sensitive detection of low-abundance EGFR exon 19-del mutant genomic DNA. The method consists of pre-amplification with PCR, thermal cycling of ligation by Taq ligase, and subsequent rolling circle amplification (RCA). PCR-amplified DNA from genomic DNA samples was used as splint DNA to conjugate both ends of linear padlock DNA, generating circular padlock DNA template for RCA. Long stretches of ssDNA harboring multiple copies of G-quadruplex structure was generated in RCA and detected by thioflavin T (ThT) fluorescence, which is specifically intercalated into the G-quadruplex, emitting strong fluorescence. Sensitivity of tandem gene amplification assay for detection of the EGFR exon 19-del from gDNA was as low as 3.6 pg, and mutant gDNA present in the pooled normal plasma was readily detected as low as 1% fraction. Hence, fluorometric detection of low-abundance EGFR exon 19 deletion mutation using tandem gene amplification may be applicable to clinical diagnosis of NSCLC patients with appropriate TKI treatment.

A Fluorescence-based cDNA-AFLP Method for Identification of Differentially Expressed Genes

  • Park, Sook-Young;Jwa, Nam-Soo;Chi, Myoung-Hwan;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • v.25 no.2
    • /
    • pp.184-188
    • /
    • 2009
  • Identification of differently expressed genes under specific tissues and/or environments provides insights into the nature and underlying mechanisms of cellular processes. Although cDNA-AFLP (Amplified Fragment Length Polymorphism) is a powerful method for analyzing differentially expressed genes, its use has been limited to the requirement of radioactive isotope use and the difficulty of isolating the bands of interest from a gel. Here, we describe a modified method for cDNA-AFLP that uses a fluorescence dye for detection and isolation of bands directly from a small size polyacrylamide gel. This method involves three steps: (i) preparation of cDNA templates, (ii) PCR amplification and differential display, and (iii) identification of differentially expressed genes. To demonstrate its utility and efficiency, differentially expressed genes during vegetative growth and appressorial development of Magnaporthe oryzae were analyzed. This method could be applied to compare gene expression profiles in a diverse array of organisms.

Transient Protection of Intramolecular Hydrogen Bonding: A Simple but Elegant Approach for Functional Imaging

  • Kim, Jong-Man;Min, Sung-Jun;Park, Bum-Jun;Lee, Jae-Hyung;Ahn, Kwang-Duk
    • Macromolecular Research
    • /
    • v.12 no.5
    • /
    • pp.493-500
    • /
    • 2004
  • We have developed a novel method for patterning functional images in thin polymer films. The key materials we utilized for the imaging were dihydroxyanthraquinones protected with acid-labile tert-butoxycarbonyl (t-Boc) blocking groups. Among the tested compounds, 1,4-dihydroxyanthraquinone (quinizarin; 1) underwent the most drastic change in terms of its color and fluorescence upon protection. We prepared the t-Boc-protected quinizarin and polymers bearing the protected quinizarins as pendent groups. To investigate the possibility of a single-component imaging system, we synthesized a styrenic monomer 14 incorporating protected quinizarin and a maleimide derivative 15 bearing a photoacid generating group and subjected them to polymerization. Selective removal of the protecting groups of the quinizarin moieties in the exposed area using photolithographic techniques allowed regeneration of quinizarin and patterned fluorescence images in the polymer films.

Significance of Human Telomerase RNA Gene Amplification Detection for Cervical Cancer Screening

  • Chen, Shao-Min;Lin, Wei;Liu, Xin;Zhang, You-Zhong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.2063-2068
    • /
    • 2012
  • Aim: Liquid-based cytology is the most often used method for cervical cancer screening, but it is relatively insensitive and frequently gives equivocal results. Used as a complementary procedure, the high-risk human papillomavirus (HPV) DNA test is highly sensitive but not very specific. The human telomerase RNA gene (TERC) is the most often amplified oncogene that is observed in cervical precancerous lesions. We assessed genomic amplification of TERC in liquid-based cytological specimens to explore the optimal strategy of using this for cervical cancer screening. Methods: Six hundred and seventy-one residual cytological specimens were obtained from outpatients aged 25 to 64 years. The specimens were evaluated by the Digene Hybrid Capture 2 (HC2) HPV DNA test and fluorescence in situ hybridization (FISH) with a chromosome probe to TERC (3q26). Colposcopic examination and histological evaluation were performed where indicated. Results: The TERC positive rate was higher in the CIN2+ (CIN2, CIN3 and SCC) group than in the normal and CIN 1 groups (90.0% vs. 10.4%, p < 0.01). In comparison with the HC2 HPV DNA test, the TERC amplification test had lower sensitivity but higher specificity (90.0% vs. 100.0%, 89.6% vs. 44.0%, respectively). TERC amplification test used in conjunction with the HC2 HPV DNA test showed a combination of 90.0% sensitivity and 92.2% specificity. Conclusion: The TERC amplification test can be used to diagnose cervical precancerous lesions. TERC and HPV DNA co-testing shows an optimal combination of sensitivity and specificity for cervical cancer screening.

Rapid and Sensitive Detection of Lettuce Necrotic Yellows Virus and Cucumber Mosaic Virus Infecting Lettuce (Lactuca sativa L.) by Reverse Transcription Loop-Mediated Isothermal Amplification

  • Zhang, Yubao;Xie, Zhongkui;Fletcher, John D;Wang, Yajun;Wang, Ruoyu;Guo, Zhihong;He, Yuhui
    • The Plant Pathology Journal
    • /
    • v.36 no.1
    • /
    • pp.76-86
    • /
    • 2020
  • Cucumber mosaic virus (CMV) is damaging to the growth and quality of lettuce crops in Lanzhou, China. Recently, however, for the first time an isolate of lettuce necrotic yellows virus (LNYV) has been detected in lettuce crops in China, and there is concern that this virus may also pose a threat to lettuce production in China. Consequently, there is a need to develop a rapid and efficient detection method to accurately identify LNYV and CMV infections and help limit their spread. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) assays were developed to detect the nucleoprotein (N) and coat protein (CP) genes of LNYV and CMV, respectively. RT-LAMP amplification products were visually assessed in reaction tubes separately using green fluorescence and gel electrophoresis. The assays successfully detected both viruses in infected plants without cross reactivity recorded from either CMV or LNYV or four other related plant viruses. Optimum LAMP reactions were conducted in betaine-free media with 6 mM Mg2+ at 65℃ for LNYV and 60℃ for 60 min for CMV, respectively. The detection limit was 3.5 pg/ml and 20 fg/ml using RT-LAMP for LNYV and CMV plasmids, respectively. Detection sensitivity for both RT-LAMP assays was greater by a factor of 100 compared to the conventional reverse transcription polymerase chain reaction assays. This rapid, specific, and sensitive technique should be more widely applied due to its low cost and minimal equipment requirements.

Development of a Novel Multiple Cross-Linking Spiral Amplification for Rapid and Sensitive Detection of HPV16 DNA

  • Zhang, Donghong;Liu, Dongliang;Liu, Bing;Ma, Xiulan
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.4
    • /
    • pp.610-620
    • /
    • 2021
  • There has been increasing interest in the head and neck squamous cell carcinoma (HNSCC) that is caused by high-risk human papillomavirus (HR-HPV) and has posed a significant challenge to Otolaryngologists. A rapid, sensitive, and reliable method is required for the detection of HR-HPV in clinical specimens to prevent and treat HPV-induced diseases. In this study, a multiple cross-linking spiral amplification (MCLSA) assay was developed for the visual detection of HPV-16. In the MCLSA assay, samples were incubated under optimized conditions at 62℃ for 45 min, and after mixing with the SYBR Green I (SGI) dye, the positive amplicons showed bright green fluorescence while the negative amplicons exhibited no obvious change. The specificity test revealed that the developed MCLSA technique had high specificity and could effectively distinguish all five HPV-16 strains from other pathogenic microorganisms. In terms of analytical sensitivity, the limit of detection (LoD) of MCLSA assay was approximately 5.4 × 101 copies/tube, which was 10-fold more sensitive than loop-mediated isothermal amplification (LAMP) and RT-PCR. The detection results of laryngeal cancer specimens collected from 46 patients with suspected HPV infection in the Liaoning region demonstrated that the positive detection rates of MCLSA and hybridized capture 2 kit were 32.61% (15/46). The true positive rate of the MCLSA assay was higher than that of RT-PCR (100% vs. 93.33%) and LAMP (100% vs. 86.67%). Therefore, the MCLSA assay developed in the present study could be a potentially useful tool for the point-of-care (PoC) diagnosis of HR-HPV, especially in resource-limited countries.

Combined Study of Cytogenetics and Fluorescence in Situ Hybridization (FISH) Analysis in Childhood Acute Lymphoblastic Leukemia (ALL) in a Tertiary Cancer Centre in South India

  • Mazloumi, Seyed Hashem Mir;Madhumathi, D.S.;Appaji, L.;Prasannakumari, Prasannakumari
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.3825-3827
    • /
    • 2012
  • FISH is one of the most sensitive molecular methods to detect genetic abnormalities with DNA probes. When cytogenetic studies are normal or insufficient, FISH may detect cryptic rearrangements, rare or slowly proliferative abnormal populations in non-mitotic cells. We cytogenetically evaluated 70 childhood ALL - 67.1% were found to have an abnormal karyotype. The 23 patients (32.9%) with a normal karyotype were analyzed by FISH applying two probes; TEL/AML1 and MYB which detect cryptic rearrangements of t(12;21)(p13;q22) and deletion of (6q) respectively, associated with a good prognosis. Out of 23 patients, one was positive for t(12;21)(p13;q22) (4.3%). None of our patients were positive for MYB del(6q). Two patients showed an extra signal for MYB on chromosomes other than 6 (8.6 %) indicating amplification or duplication. Findings were compared with the available literature. Our study clearly indicated the integrated FISH screening method to increase the abnormality detection rate in a narrow range. FISH is less useful for diagnostic study of patients with suspected del(6q) but it helps in detecting known cryptic rearrangements as well as identification of new abnormalities(translocation , duplication and amplification) at the gene level.

Determination of HER2 Gene Amplification in Breast Cancer using Dual-color Silver Enhanced in situ Hybridization (dc-SISH) and Comparison with Fluorescence ISH (FISH)

  • Unal, Betul;Karaveli, Fatma Seyda;Pestereli, Hadice Elif;Erdogan, Gulgun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.6131-6134
    • /
    • 2013
  • Background: The two basic methods that are currently accepted to identify the HER2 status are immunohistochemistry and flyorescence in situ hybridization (FISH). The aim of this study was to perform the dual-color silver in situ hybridization (dc-SISH) technique as an alternative to FISH. Materials and Methods: A total of 40 invasive breast carcinoma cases were assessed for HER2 gene amplification by FISH and dual-color SISH. Results: Significant correlation was found in the HER2 expression results obtained with the two approaches (p=0.001, p<0.05). The concordance rate was 92.3%. Conclusions: Foutine practical use of the dc-SISH method, which is much easier to apply, score, and evaluate, has many advantages. HER2 and CEN17 status can be evaluated simultaneously with the newly developed "Dual-Color Probe". All these specifications and the reliable results obtained support the widespread use of SISH technique in clinical practice.